IEOR 115 Industrial and Commercial Data Systems Spring 2013 Prof. Ken Goldberg Query Optimization

An Example

Consider some relations and metadata below:

Relations

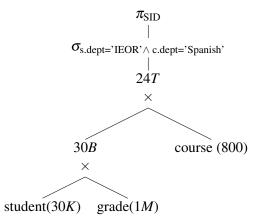
- Student(SID, SLName, Dept)
- Course(CID, Dept, CName)
- Grade(SID, CID, Sem, Grade)

Metadata

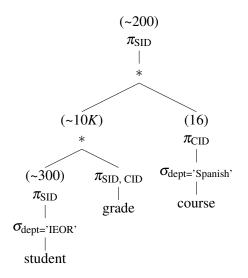
- 30,000 students (~300 IEOR majors, ~1%)
- 800 courses (16 Spanish courses, ~2%)
- 1,000,000 grade records (~30 per student)

A typical SQL query would look like:

The query tree is shown below



Consider this optimized query tree instead:



Equivalence Rules

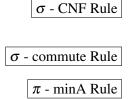
1. $\sigma_{c_1}(\sigma_{c_2}(...(\sigma_{c_n}(R)))) \Leftarrow \sigma_{c_1 \land c_2 \land ... \land c_n}(R)$ (CNF \equiv Conjunctive Normal Form)

2.
$$\sigma_{c_2}(\sigma_{c_1}(R)) \Leftarrow \sigma_{c_1}(\sigma_{c_2}(R))$$

- 3. $\pi_{Amin}(R) \Leftarrow \pi_{Amin}(\pi_{A'}(\pi_{MaxA}(R)))$ $Amin \subset A' \subset MaxA$
- 4. $R * (S * T) \Leftarrow (R * S) * T$

5.
$$(T * R) * S \Leftarrow (R * S) * T$$

6.
$$R - \sigma_c(R) \Leftarrow \sigma_{\neg c}(R)$$



* - Associative Rule

* - Commutative Rule

 \neg Rule

CNF

- A disjunct is a wff that contains only ∨ and ¬ connectives. E.g. ¬p∨q
 Note that formulas can be convicted into disjuncts. E.g. p → q ⊨ ¬p∨q
- A **conjunct** is a wff that contains only \land and \neg connectives
- A wff is in CNF if it is a single disjunct or a set of disjuncts joined by ∧.
 For example, (φ₁ ∨ ¬φ₂) ∧ (φ₁ ∨ φ₃) = {φ₁ ∨ ¬φ₂, φ₁ ∨ φ₃}

Recap: DeMorgan's Rules

- $\neg(c_1 \wedge c_2) \equiv \neg c_1 \lor \neg c_2$
- $\neg(c_1 \lor c_2) \equiv \neg c_1 \land \neg c_2$

Optimization Algorithm

- 1. For each σ put into CNF, reorder them so that the most selective conditions are applied first.
- 2. If you have $R \bowtie_{C_R \land C_S} S$, change it to $\sigma_{C_R}(R) * \sigma_{C_S}(S)$. Move highly selective σ as far down the query tree as possible.
- 3. Push the projections (π) as far down as possible.