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1 Virtual Lab 10 Solution: Biased Coin

1.0.1 EECS 70: Discrete Mathematics and Probability Theory, Fall 2014

Due Date: Monday, November 10th, 2014 at 12pm Name: EECS 70
Login: cs70-ta
Instructions:

• Please fill out your name and login above.

• Please leave your answers in the Markdown cells, marked with "YOUR COMMENTS HERE". If
you don’t see this cell at the end of a question, it simply means that question doesn’t require an answer.

• Complete this lab by filling in all of the required functions, marked with "YOUR CODE HERE".

• If you plan to use Python, make sure to go over Tutorial 1: Introduction to Python and IPython
and Tutorial 2: Plotting in Python with Matplotlib before attempting the lab.

• Make sure you run every code cell one after another, i.e. don’t skip any cell. A shortcut for doing this
in the notebook is Shift+Enter. When you finish, choose ‘Cell > Run All’ to test your code one last
time all at once.

• Most of the solution requires no more than a few lines each.

• Please do not hardcode the result or change any function without the "YOUR CODE HERE" mark.

• Questions? Bring them to our Office Hour and/or ask on Piazza.

• Good luck, and have fun!

1.1 Table of Contents

The number inside parentheses is the number of functions or code blocks you are required to fill out for each
question. Always make sure to double check before you submit.

• Part (a): Biased Coin Warm-up (0)

• Part (b): Biased Coin Equation (0)

• Part (c): Biased Coin’s Heads (3)

• Part (d): Number of Heads in Many Trials (2)

• Part (e): S k / k (1)

• Part (f): Normalization Redux (1)

• Part (g): Histogram Normalization (1)

• Part (h): Varying the Bias (1)

• Part (i): Log Gap (2)

• Part (j): Standard Deviation (1)

• Part (k): Normalized q-curve Redux (1)

• Part (l): n choose k (2)

In [1]: %pylab inline

Populating the interactive namespace from numpy and matplotlib
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In [2]: from __future__ import division # so that you don’t have to worry about float division

import random

import math

## Introduction
In this week’s lab, we will continue to explore the ideas behind coin tosses. Denote p as the probability

of tossing a head, and 1− p as the probability of tossing a tail. In the last two labs, p was 0.5, since we were
exploring fair coin tosses. Now assume p can be any number such that 0 ≤ p ≤ 1. As before, let k denote
the total number of coin tosses.

At an abstract level, most of what this lab is about is doing the previous labs again, except that now the
coin is biased. One new concept is introduced: we now need to understand how the bias of the coin affects
the shapes of curves that emerge.

This lab might initially look long and daunting, but we are essentially redoing the previous two labs
again. Do not worry about the length.

## Part (a): Biased Coin Warm-up
Consider p = 0.7, p̄ = 1 − p = 0.3. If you plotted a histogram for the number of heads and tails for any

number of coin cosses k, what would you expect to see that is different from the fair coin toss?
YOUR ANSWER HERE:
## Part (b): Biased Coin Equation
If I tossed 100 coins, approximately how many heads should I get? Building on this, can you come up

with an equation using k, p, p̄ that approximately describes how many heads and tails you expect to see for
any case?

YOUR ANSWER HERE:
## Part (c): Biased Coin’s Heads
Use a random number generator to sample a sequence of coin tosses with p = 0.7, p̄ = 0.3. Plot a bar

chart for each k = 10, 100, 1000, 4000. Is this what you expected from parts (a) and (b)? How well does your
equation match for k = 10? For k = 4000?

Hint : Implement the functions biased coin, which simulates a biased coin flip with Pr(Head) = p, and
run trial, which returns the number of heads in k tosses of a biased coin with probability p of getting
heads. They should be very similar to the ones you implemented previously for the fair coin.

In [3]: def biased_coin(p):

"""

Creates a biased coin with p(Head) = p

Returns True if heads and False otherwise.

YOUR CODE HERE

"""

assert p >= 0 and p <= 1, "Wrong biased coin probability"

return random.random() <= p

In [4]: def run_trial(p, k):

"""

Runs a trial of k tosses of a biased coin (w.p. p of heads)

and returns number of heads.

YOUR CODE HERE

"""

return sum([biased_coin(p) for _ in xrange(k)])

In [5]: def partC(p=0.7, kranges=[10,100,1000,4000]):

"""

Part (c) code
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"""

print ’Question 2 part (c):’

print ’Probability of head: %f’%p

for k in kranges:

heads = run_trial(p, k)

print ’Number of tosses: %i’%k

print ’\tHeads: %i, Tails: %i, H/(H+T): %f’%(heads, k-heads, heads*1.0/k)

# YOUR CODE HERE

plt.bar([0, 1], [heads, k-heads])

plt.xticks([0.4, 1.4],[’Heads’, ’Tails’])

plt.ylabel(’Frequency’)

plt.title(’k = %i, p = %.1f’%(k,p))

plt.show()

In [6]: partC()

Question 2 part (c):

Probability of head: 0.700000

Number of tosses: 10

Heads: 7, Tails: 3, H/(H+T): 0.700000

Number of tosses: 100

Heads: 72, Tails: 28, H/(H+T): 0.720000
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Number of tosses: 1000

Heads: 699, Tails: 301, H/(H+T): 0.699000
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Number of tosses: 4000

Heads: 2838, Tails: 1162, H/(H+T): 0.709500

YOUR COMMENTS HERE:
## Part (d): Number of Heads in Many Trials
From the previous parts, you’ve counted the number of heads and tails for only one trial. Now fix k to be

1000. Let Sk be the total number of heads in a trial with k total coin cosses, and let m be the total number
of trials.

Plot a histogram of Sk for m = 1000 with bin size of 1. Do this again for k = 10, 100, 4000.
Hint : Implement the function run many trials, which returns a list of the number of heads in each trial.

In [7]: def run_many_trials(p, k, m):

"""

Runs m trials of k tosses of a biased coin (w.p. p of heads)

and returns a list of the numbers of heads.

YOUR CODE HERE

"""

return [run_trial(p, k) for _ in xrange(m)]

In [8]: def partD(p=0.7, kranges=[10,100,1000,4000], m=1000):

"""

Code for part (d)

"""

print ’Question 2 part (d):’

print ’Probability of head: %f’%p

bin_width = 1
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for k in kranges:

results = run_many_trials(p, k, m)

print ’Number of tosses: %i’%k

print ’Number of trials: %i’%m

# YOUR CODE HERE

plt.hist(results, bins=xrange(min(results), max(results)+bin_width*2, bin_width), align=’mid’)

plt.ylabel(’Frequency’)

plt.xlabel(’Number of heads’)

plt.title(’k = %i, p = %.1f’ % (k, p))

plt.show()

In [9]: partD()

Question 2 part (d):

Probability of head: 0.700000

Number of tosses: 10

Number of trials: 1000

Number of tosses: 100

Number of trials: 1000
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Number of tosses: 1000

Number of trials: 1000
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Number of tosses: 4000

Number of trials: 1000

## Part (e): S k / k
Repeat the previous part, but instead plot the histograms of Sk

k with bin size of 0.01. Make sure to
plot the histograms in the same figure (so only one plot) for different values of k. How are the histograms
different as k increases? Comment on what you are observing.

Hint : You can use the argument histtype=’barstacked’ when calling plt.hist to stack the bars on
top of each other.

In [10]: def partE(p=0.7, kranges=[10,100,1000,4000], m=1000):

"""

Code for part (e)

"""

print ’Question 2 part (e):’

print ’Probability of head: %f’%p

bin_width = 0.01

# YOUR CODE HERE

results = {}

for k in kranges:

results[k] = [Sk*1.0/k for Sk in run_many_trials(p, k, m)]

plt.hist(results[k], bins=np.arange(min(results[k]), max(results[k])+bin_width*2, bin_width),

label=str(k), histtype=’barstacked’)
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# END YOUR CODE HERE

plt.legend()

plt.ylabel(’Frequency’)

plt.xlabel(’Fraction of heads’)

plt.title(’k = %s, p = %.1f’ % (str(kranges), p))

plt.show()

In [11]: partE()

Question 2 part (e):

Probability of head: 0.700000

YOUR COMMENTS HERE:
## Part (f): Normalization Redux
In last week’s lab, you discovered a very interesting normalization by

√
k that seemed to make certain

curves fall right on top of each other. Let’s see if that still works.
Redo the plot you did in part (g) of last week’s lab, except for our biased coin and the k values you have

explored above. Center the horizontal axis of the plot to be around 0.

In [12]: def partF(p=0.7, kranges=[10,100,1000,4000], m=1000):

"""

Code for part (f)

"""

print ’Question 2 part (f):’

print ’Probability of head: %f’%p

# YOUR CODE HERE
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results = {}

for k in kranges:

results[k] = [(Sk*1.0/k-p)*math.sqrt(k) for Sk in run_many_trials(p, k, m)]

results[k].sort()

plt.plot(results[k], xrange(1,m+1), label=str(k))

# END YOUR CODE HERE

plt.legend()

plt.ylabel(’Frequency’)

plt.xlabel(’Normalized and centered fraction of heads’)

plt.xlim(-2.0,2.0)

plt.title(’k = %s, p = %.1f’ % (str(kranges), p))

plt.show()

In [13]: partF()

Question 2 part (f):

Probability of head: 0.700000

## Part (g): Histogram Normalization
For kicks, let’s try this same normalization for histograms. Plot histograms of Sk−kp√

k
for m = 1000 and

k = 10, 100, 1000, 4000. Try 4 different bin sizes, 0.01, 0.05, 0.1, 0.5. You should have 4 different plots, one
for each bin size.

Comment on what you think the relationship is between these histograms and the “cliff-face” curves in
the previous part. Think about what they mean.

In [14]: def partG(p=0.7, kranges=[10,100,1000,4000], m=1000, bin_widths=[0.01,0.05,0.1,0.5]):

"""

10



Code for part (g)

"""

print ’Question 2 part (g):’

print ’Probability of head: %f’%p

results = {}

for bin_width in bin_widths:

plt.figure()

# YOUR CODE HERE

for k in kranges:

results[k] = [(Sk -k*p)/math.sqrt(k) for Sk in run_many_trials(p, k, m)]

plt.hist(results[k], bins=np.arange(min(results[k]), max(results[k])+bin_width*2, bin_width),

align=’mid’, label=str(k), histtype=’barstacked’)

# END YOUR CODE HERE

plt.legend()

plt.ylabel(’Frequency’)

plt.xlabel(’Normalized and centered fraction of heads’)

plt.xlim(-2.0,2.0)

plt.title(’k = %s, p = %.1f, bin size = %s’ % (str(kranges), p, bin_width))

plt.show()

In [15]: partG()

Question 2 part (g):

Probability of head: 0.700000
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YOUR COMMENTS HERE:
## Part (h): Varying the Bias
Now, let’s see what the effect is of varying the bias of the coin. Repeat the previous two parts for

p = 0.1, 0.3, 0.5, 0.9. You can assume the bin size is 0.1. You should have 4 pairs of plots.
Make sure that all of these are plotted on the same scale as the previous parts. What do you observe?

Which p seem more variable even after this
√
k normalization? Less variable?

In [16]: def partH(pranges=[0.1,0.3,0.5,0.9], kranges=[10,100,1000,4000], m=1000):

"""

Code for part (g)

"""

print ’Question 2 part (h): (redo (f) and (g) for different p)’

# YOUR CODE HERE

# Make sure to reuse your code wisely...

for p in pranges:

partF(p, kranges, m)

partG(p, kranges, m, bin_widths=[0.1])

In [17]: partH()

Question 2 part (h): (redo (f) and (g) for different p)

Question 2 part (f):

Probability of head: 0.100000
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Question 2 part (g):

Probability of head: 0.100000
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Question 2 part (f):

Probability of head: 0.300000

Question 2 part (g):

Probability of head: 0.300000
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Question 2 part (f):

Probability of head: 0.500000
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Question 2 part (g):

Probability of head: 0.500000

Question 2 part (f):

Probability of head: 0.900000
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Question 2 part (g):

Probability of head: 0.900000
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YOUR COMMENTS HERE:
## Part (i): Log Gap
Based on what you observe in the previous pattern, you decide to try and hunt out the actual dependence

on the shape by looking at appropriate plots. As you did in part (f) of last week’s lab, plot the Log of the
gap between the 0.75 and 0.25 quartiles against ln p+ ln(1− p) in a scatter plot for k = 4000. (For this, you
could also just plot the gap against p(1− p) on a Log-Log plot.) What do you observe?

Hint : Implement the function calculate quartile gap, which takes a list containing the number of
heads (the return value of run many trials) and calculates the gap between the first and third quartiles.
Also, you can plot a scatter plot with plt.scatter().

In [18]: def calculate_quartile_gap(results):

"""

Calculates the gap between the first and third quartiles

YOUR CODE HERE

"""

results.sort()

n = len(results)

q1 = int(round(0.25*n))

q3 = int(round(0.75*n))

return results[q3]-results[q1]

In [34]: def partI(pranges=[0.1,0.3,0.5,0.7,0.9], k=4000, m=1000):

"""

Code for part (i)

"""

print ’Question 2 part (i)’

# YOUR CODE HERE

points = []

for p in pranges:

print (’Calculating for p = %.1f’%p)

qgap = calculate_quartile_gap(run_many_trials(p, k, m))

points.append((math.log(qgap), math.log(p*(1-p))))

plt.scatter([pt[0] for pt in points], [pt[1] for pt in points])

plt.ylabel(’$log(p(1-p))$’)

plt.xlabel(’log(quartile gap between 75% and 25%)’)

plt.title(’Log of the gap between the 0.75 and 0.25 quartiles against $\ln p + \ln(1-p)$’)

plt.show()

In [35]: partI()

Question 2 part (i)

Calculating for p = 0.1

Calculating for p = 0.3

Calculating for p = 0.5

Calculating for p = 0.7

Calculating for p = 0.9
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YOUR COMMENTS HERE:
## Part (j): Standard Deviation
This suggests another normalization. We call

√
p(1− p) the “standard deviation” for a 0-1 coin toss

with probability p of being 1.
Plot a histogram of Sk−kp√

k
√

p(1−p)
for k = 1000 with bin size of 0.1. Do this again for k = 10, 100, 4000 and

for p = 0.1, 0.3, 0.5, 0.7, 0.9 as before. You should have one plot for each value of p, so there should be 5 plots
in total.

What do you observe?

In [21]: def partJ(pranges=[0.1,0.3,0.5,0.7,0.9], kranges=[10,100,1000,4000], m=1000):

"""

Code for Q2 part (j)

"""

print ’Question 2 part (j):’

bin_width = 0.1

for p in pranges:

print (’Probability of head p = %.1f’%p)

# YOUR CODE HERE

std = math.sqrt(p*(1-p))

results = {}

for k in kranges:

results[k] = [(Sk -k*p)/(math.sqrt(k)*std) for Sk in run_many_trials(p, k, m)]

plt.hist(results[k], bins=np.arange(min(results[k]), max(results[k])+bin_width*2, bin_width),

label=str(k), histtype=’barstacked’)

# END YOUR CODE HERE
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plt.legend()

plt.ylabel(’Frequency’)

plt.xlabel(’Normalized and centered fraction of heads’)

plt.title(’k = %s, p = %.1f’ % (str(kranges), p))

plt.show()

In [22]: partJ()

Question 2 part (j):

Probability of head p = 0.1

Probability of head p = 0.3
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Probability of head p = 0.5
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Probability of head p = 0.7

Probability of head p = 0.9

23



YOUR COMMENTS HERE:
## Part (k): Normalized q-curve Redux
Use the same normalization as the previous part and make the cliff-face plots corresponding to part (d)

of last week’s lab. To be precise, look at the range d = −3 to d = +3 and plot how often (out of the m runs
— as a fraction between 0 and 1) Sk−kp√

k
√

p(1−p)
is less than d.

This should be an increasing curve. Here, put all the different p plots together but have three different
plots for k = 100, 1000, 4000. (You already know from earlier plots that the different k’s track each other.)

In [23]: def partK(pranges=[0.1,0.3,0.5,0.7,0.9], kranges=[100,1000,4000], m=1000):

"""

Code for Q2 part (k)

"""

print ’Question 2 part (k):’

for k in kranges:

plt.clf()

# YOUR CODE HERE

results = {}

print (’Number of trials k = %i’%k)

for p in pranges:

print (’Probability of head p = %.1f’%p)

std = math.sqrt(p*(1-p))

results[p] = [(Sk -k*p)/(math.sqrt(k)*std) for Sk in run_many_trials(p, k, m)]

results[p].sort()

plt.plot(results[p], np.linspace(0, 1, m), label=str(p))

# END YOUR CODE HERE

plt.legend()

plt.ylabel(’Frequency’)

plt.xlabel(’Normalized and centered fraction of heads’)

plt.title(’k = %i, p = %s’ % (k, str(pranges)))

plt.show()

In [24]: partK()

Question 2 part (k):

Number of trials k = 100

Probability of head p = 0.1

Probability of head p = 0.3

Probability of head p = 0.5

Probability of head p = 0.7

Probability of head p = 0.9
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Number of trials k = 1000

Probability of head p = 0.1

Probability of head p = 0.3

Probability of head p = 0.5

Probability of head p = 0.7

Probability of head p = 0.9
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Number of trials k = 4000

Probability of head p = 0.1

Probability of head p = 0.3

Probability of head p = 0.5

Probability of head p = 0.7

Probability of head p = 0.9
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## Part (l): n choose k
Lastly, we would like to explore a function that defines how many ways you can choose k distinct objects

out of n possible objects. This is written as
(
n
k

)
and is read aloud as “n choose k”. We define

(
n
k

)
= n!

k!(n−k)! .

For example,
(
5
3

)
= 5!

3!(5−3)! = 5·4·3·2·1
(3·2·1)·(2·1) = 120

12 = 10. We wish to explore this function. Plot the value
(
50
k

)
on the y-axis and k on the x-axis for 0 ≤ k ≤ 50.

Does this constantly grow as k gets larger? What does the shape of the graph remind you of?
Hint : Implement the function choose(n, k) using math.factorial.

In [25]: def choose(n, k):

"""

Computes n choose k

"""

assert n >= 0 and k >= 0 and n >= k, "Incorrect parameters"

# YOUR CODE HERE

return math.factorial(n)/(math.factorial(k)*math.factorial(n-k))

Test your implementation below. Both tests should print True if your implementation is correct.

In [26]: choose(5, 3) == 10

Out[26]: True

In [27]: choose(17, 1) == 17

Out[27]: True
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In [28]: def partL(n=50):

"""

Code for Q2 part (l)

YOUR CODE HERE

"""

plt.plot(range(0,n+1), [choose(n, k) for k in xrange(0, n+1)])

plt.xlabel(’k’)

plt.ylabel(’n choose k’)

plt.title(’n = %i’ % n)

plt.show()

In [29]: partL()

YOUR COMMENTS HERE:
Congratulations! You are done with Virtual Lab 10.
Don’t forget to convert this notebook to a pdf document, merge it with your written homework, and

submit both the pdf and the code (as a zip file) on glookup.
Reminder: late submissions are NOT accepted. If you have any technical difficulty, resolve it early on

or use the provided VM.
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