lab9sol

November 2, 2014

1 Virtual Lab 9 Solution: Intro to Randomness (cont.)

1.0.1 EECS 70: Discrete Mathematics and Probability Theory, Fall 2014
Due Date: Monday, November 3rd, 2014 at 12pm Name:

Login: cs70-

Instructions:

e Please fill out your name and login above.

e Please leave your answers in the Markdown cells, marked with "YOUR COMMENTS HERE".

e Complete this lab by filling in all of the required functions, marked with "YOUR CODE HERE".
e If you plan to use Python, make sure to go over Tutorial 1: Introduction to Python and IPython

and Tutorial 2: Plotting in Python with Matplotlib before attempting the lab.
e Make sure you run every code cell one after another, i.e. don’t skip any cell. A shortcut for doing this
in the notebook is Shift+Enter. When you finish, choose ‘Cell > Run All’ to test your code one last
time all at once.
Most of the solution requires no more than a few lines each.
Please do not hardcode the result or change any function without the "YOUR CODE HERE" mark.
Questions? Bring them to our Office Hour and/or ask on Piazza.

Good luck, and have fun!

1.1 Table of Contents

The number inside parentheses is the number of functions or code blocks you are required to fill out for each
question. Always make sure to double check before you submit.

e Introduction

e Part (a): Random Walk (3)

e Part (b): Normalized Random Walk (1)
e Part (c): g-curve (2)

e Part (d): Multiple g-curves (1)

°): Quartile Values (1)

°): Quartile Gap (1)

°): Scale the Gap (2)

.): Monty Hall (2)

In [1]: Ypylab inline
Populating the interactive namespace from numpy and matplotlib

In [2]: from __future_
import random
import math

import division # so that you don’t have to worry about float division

#4 Introduction

In this week’s lab, we will continue our coin tossing example, but see it from a different perspective.
Make sure you review the lab solution from Homework 8 before moving on.

Below, you will find sample implementations for some of the functions from last week’s lab.

In [3]: def count_heads(k):

nmmnn

Counts the number of heads in num_flips
mmn

return sum([round(random.random()) for _ in range(k)])

In [4]: def count_heads_in_runs(k, n):
mmn
Returns a list of length n, where each element is the number
of heads in k flips.

mmnn

return [count_heads(k) for

in range(n)]

In [5]: def scaled_run(k, n):
Shifts the center of the horizontal axis to the origin by subtracting

half the number of tosses from the number of heads
mmn

return [count_heads(k) - k//2 for _ in range(n)]

#4# Part (a): Random Walk

Let’s change gears a little bit from last time. Consider the following visualization of a sequence of coin
flips. We start at zero. For every head we get, we add one. For every tail we get, we subtract one.

Hence, a sequence of 1000 coin tosses would be a path that starts at (0,0), and then goes to either (1,1)
or (1,-1), and continues wandering till (1000, y) somewhere. Plot 20 such paths on the same plot based on
randomly flipped coins. Each sample path should have 1000 coin tosses.

What do you observe about the paths?

Hint: First, implement the function rand_one, which generates 1 and —1 randomly with roughly 50%
probability each. Then, implement the path(n) function, which returns a list of n elements that starts at 0
and every element thereafter is either one more or one less than the previous one. In Python, you can access
the last element in a list with the syntax 1st[-1].

In [6]: def rand_one():

mmn

Returns -1 roughly one half of a time, and 1 the other half

YOUR CODE HERE

mmnn

return -1 if random.random() < 0.5 else 1

In [7]: # Test your implementation by repeatedly running this code cell.
You should see that the wvalue fluctuates between -1 and 1.

rand_one ()

OQut[7]: 1

In [8]: def path(n):

mimn

An n-step random walk that starts at O

YOUR CODE HERE

mimn

walk = [0]

for _ in range(l, n):
walk.append(walk[-1] + rand_one())

return walk

In [9]: def partAQ):

mimn

YOUR CODE HERE

nimn

for _ in range(20):
plt.plot(path(1000))

plt.title("20 random walks of 1000 coin flips")

plt.xlabel("k")

plt.show()

In [10]: partA()

20 random walks of 1000 coin flips

60
“ A A *&.,‘ b

o lif AR 'i{" nhﬂllﬂh}l .:'::m&' E‘*‘#"f*ff
0| Ve "‘f
—40
~60
—80 - 200 200 =h S

YOUR COMMENTS HERE:

#+# Part (b): Normalized Random Walk

Notice that the histograms you were plotting earlier were effectively looking at vertical slices in this picture
and asking how many sample paths were crossing through a particular y coordinate. (If we are looking at

k tosses, then having exactly h heads is the same as this sample path crossing through (k,h — (k — h)) =
(k,2h — k))

Now, let’s see what the rescalings we were doing correspond to. The common-set-of-units scaling is what
the previous part corresponded to. How would you change the scaling to correspond to the normalized set
of units in part (e)? (in this plot, a sample path that consists of all heads should basically be a straight line
that stays at the upper-limit — say 1. And a sample path that consists of all tails should be a straight line
that stays at the lower limit — say —1).

Give this new scaling (it will depend on k — so it will change the visual shape of a path) and plot 100
sample paths of 1000 coin tosses each.

Comment on what this suggests relative to the earlier plots.

In [11]: def partB():

mmnn

YOUR CODE HERE

mmnn

for _ in range(100):

plt.plot([k/(i+1) for i, k in enumerate(path(1000))])
plt.title("20 normalized random walks of 1000 coin flips")
plt.xlabel("k")
plt.show()

In [12]: partBQ)

1o 20 normalized random walks of 1000 coin flips

0 200 400 600 800 1000

YOUR COMMENTS HERE:

Part (c): g-curve

Shifting gears one more time, we are now going to look at the same basic experiment — tossing a fair
coin k times — in a third way. Let R for a given run be the ratio of heads.

Fix k = 1000 to be the number of coin tosses in a run. Let m = 1000 be the number of runs. Plot how
often R < ¢ as a function of q. The vertical axis should be (in linear scale) the fraction of the m runs in
which R < ¢, while the horizontal scale should have g ranging from 0 to 1.

Hint: Implement the function q_curve, which returns the sorted fraction of heads for each of the m runs.
You may find Python’s built-in sorted function helpful here.

In [13]: def g_curve(k, m):

mmnn

Returns the sorted fraction R <= q for each of the m runs.

YOUR CODE HERE

nmnn

result = sorted([count_heads(k) / k for
first_quartile = result[int(m * 0.25)]
second_quartile = result[int(m * 0.5)]
third_quartile = result[int(m * 0.75)]
return result, first_quartile, second_quartile, third_quartile

in xrange(m)])

In [14]: # YOUR CODE HERE
Hint: You can’t use range with floats in Python. In that case,
our good old friend np.linspace will help.

def partCQ:

mmnn

YOUR CODE HERE

mnmnn

curve, _, _, _ = q_curve(1000, 1000) # don’t care about the quartile values here yet
y_lim = np.linspace(0, 1, 1000)

plt.plot(curve, y_lim)

plt.title("Ratio of heads as a function of q")

plt.xlabel("q")

plt.ylabel("fraction of m runs where $R \leq q$")

plt.show()

In [15]: partCQ)

1o Ratio of heads as a function of g

q

0.8

06 |

0.2

fraction of m runs where I <
=
s

|]|_|:| i i i i
(44 046 048 050 052 0.54 056

q

YOUR COMMENTS HERE:

#+# Part (d): Multiple g-curves

Repeat the previous part for different values of k and put them all on the same plot. Try k£ =
2,10, 50,100, 500, 1000, 10000.

What do you see? Is this consonant with what you had observed in earlier plots?

In [16]: ks = [2, 10, 50, 100, 500, 1000, 10000]

In [17]: # YOUR CODE HERE

def partD():

nmmnn

YOUR CODE HERE

mmnn

y_lim = np.linspace(0, 1, 1000)
first_Q, second_Q, third_Q = [0, [0, [I

for k in ks:
curve, first, second, third = q_curve(k, 1000)
plt.plot(curve, y_lim, label=str(k))

Append the quartile wvalues for later parts
first_Q.append(first)

second_Q.append (second)

third_Q.append(third)

plt.title("Ratio of heads in k tosses as a function of q")

plt.xlabel("q")

plt.ylabel("fraction of m runs where $R \leq q$")
plt.legend(loc=2)

plt.show()

return first_Q, second_Q, third_Q

In [18]: first_Q, second_Q, third_Q = partD()

1o Ratio of heads in k tosses as a function of g

2 i ——
— I
I
_ [
7 0ar ;g il
w |||_|
o — 100
=
= 061 — 500 i 1
5 1000
lE o4l — 10000 b i
(=]
5 |
2]
Ld
g o2f o |JJJ.||I]
=y,
D_|:| el i i
0.0 0.2 0.4 0.6 0.8 10

YOUR COMMENTS HERE:

Part (e): Quartile Values

Now, think about rescaling the plots in the previous parts to see if there is something common about
this shape. For each k, read off the ¢ values where the curves seem to cross hypothetical horizontal lines
at 0.25,0.5,0.75. Call these the quartile markers. Compute these gs for your experiment. Plot them as a
function of k. What do you observe?

In [19]: # YOUR CODE HERE

def partEQ:

mmnn

YOUR CODE HERE

mmwn

plt.plot(ks, first_Q)

plt.plot(ks, second_Q)

plt.plot(ks, third_Q)

plt.title("q quartile markers as a function of k")
plt.ylim(0, 1)

plt.xlabel("k")

plt.ylabel("quartile value")
plt.show()

In [20]: partEQ)

q quartile markers as a function of k

10

0.8

0.6

-
—

04

guartile value

02 1

0.0

0 2000 4000 G000 8000 10000

YOUR COMMENTS HERE:

#4# Part (f): Quartile Gap

Notice that the gap between the 0.75 marker and the 0.25 marker is getting smaller as k gets larger.
Notice also that the 0.5 marker seems to be sticking around ¢ = % As a scientific problem, suppose you
wanted to discover how indeed this was scaling with k.

Plot the gap between the 0.75 and 0.25 marker as a function of k£ as a scatter plot. Use all of the
traditional axes combinations: linear-linear, linear-log, log-linear, and log-log. Which one seems to offer
some insight?

In [32]: gap = [third_Q[i] - first_Q[i] for i in range(len(first_Q))]

def plot_quartile_gap(plot_fn, ks, gap):

mmnn

Plot the quartile gap using plot_fn

mmnn

plot_fn(ks, gap)
plt.show()

In [33]: def partF():

mmnn

YOUR CODE HERE

mmnn

plt.figure()

plt.title("Linear-linear quartile gap")
plt.xlabel("k")

plt.ylabel("quartile gap")
plot_quartile_gap(plt.plot, ks, gap)

plt.figure()

plt.title("Log-linear quartile gap")
plt.xlabel("log(k)")
plt.ylabel("quartile gap")
plot_quartile_gap(plt.semilogx, ks, gap)

plt.figure()

plt.title("Linear-log quartile gap")
plt.xlabel("k")

plt.ylabel("log(quartile gap)")
plot_quartile_gap(plt.semilogy, ks, gap)

plt.figure()

plt.title("Log-log quartile gap")
plt.xlabel("log(k)")
plt.ylabel("log(quartile gap)")
plot_quartile_gap(plt.loglog, ks, gap)

In [34]: partF()

guartile gap

0.5 .

04

01

0.0

Linear-linear quartile gap

0 2000 4000 G000

8000

10000

guartile gap

lagiquartile gap)

0c Log-linear quartile gap

0.4

[
L
T

[
Pl
T

01f

0.0
10°

log(k)

Linear-log quartile gap

10t]

10 |]

-3 i i i i
10 H 2000 4000 BO00 BOO0D 10000

10

100 Log-log quartile gap

10t |]

logiguartile gap)

1072 | .

10° 10t 10° 10° 10*
log(k)

YOUR COMMENTS HERE:

#+4 Part (g): Scale the Gap

Based on what you observed in the previous set of plots, conjecture a scaling rule that lets you calculate
the gap between the 0.75 marker and the 0.25 marker as a function of k for the fair coin tosses case. Explain
your derivation in your writeup.

Use this rule to rescale the horizontal axis of the plots from three parts ago. What do you now observe
about the curves for different values of k7 By construction, they should be very close to each other in terms
of where they are crossing 0.25,0.5,0.75, but what about elsewhere?

Hint: Implement the function q_curve_norm, which does the same as q_curve, except now every point
is normalized using your scaling rule. Think about the previous part and how it can help you come up with
a scaling rule.

This is a challenging question. Don’t worry if you get stuck here.

In [24]: def g_curve_norm(k, m):
mimn
Does the same as q_curve, except now every point s
normaltized using your scaling rule.

YOUR CODE HERE

mmnn

return sorted([(count_heads(k) / k - 0.5) * math.sqrt(k) + 0.5 for _ in xrange(m)])

In [35]: def partG():

mmnn

YOUR CODE HERE

mmwn

11

y_lim = np.linspace(0, 1, 1000)
for k in ks:
plt.plot(q_curve_norm(k, 1000), y_lim, label=str(k))
plt.xlabel("normalized q")
plt.ylabel("fraction of heads in m runs")
plt.title("Scaled ratio of heads in k tosses as a function of q")
plt.legend(loc=2)
plt.show()

In [36]: partG()

Scaled ratio of heads in k tosses as a function of g

1-I:| 1 1 1]]]
— 5 5
T |
5 — 50
E — 100
E o6} 500 .
h=
m 1000 1
jg |
= 04 — 10000 i
=
2
I
E D2 A
|}_|:| i i i i i

-15 -10 -05 0.0 0.5 10 15 20 25
normalized g

YOUR COMMENTS HERE:

Part (h): Monty Hall

Below, you will find a simple implementation that simulates the Monty Hall problem. There are n doors,
and only one contains the prize. The contestant first picks a door, and then the host Monty will open all
n — 2 doors that don’t contain the prize. The contestant is then given a choice to switch or stay with his
current choice.

Your task will be to simulate 10000 trials of the Monty Hall problem. What is the probability of winning
when the contestant switches? How about when he/she stays? Does it match your expectation and what
was described in lecture and the lecture note? Please report the result in your answer.

Finally, if you want to understand how the algorithm work in general, make sure you set the verbose
parameter to True.

In [27]: def monty_hall(num_doors=3, switch=True, verbose=False):

mmnn

Carries out the game for one contestant. If ’switch’ is True,
the contestant will switch their chosen door when offered the chance.
Returns True <f the simulated contestant won, False otherwise.

12

Doors are numbered from O up to num_doors-1 (inclusive).

nmnn

Randomly choose the door hiding the prize.
winning_door = random.randint(0, num_doors-1)
if verbose:
print ’\nPrize is behind door {}’.format(winning_door+1)

The contestant picks a Tandom door, too.
choice = random.randint(0, num_doors-1)
if verbose:
print ’Contestant chooses door {}’.format(choice+1)

The host opens all but two doors.

closed_doors = list(range(num_doors))

while len(closed_doors) > 2:
Randomly choose a door to open.
door_to_remove = random.choice(closed_doors)

The host will never open the winning door, or the door

chosen by the contestant.

if door_to_remove == winning_door or door_to_remove == choice:
continue

Remove the door from the list of closed doors.
closed_doors.remove (door_to_remove)
if verbose:

print ’Host opens door {}’.format(door_to_remove+1)

There are always two doors remaining.
assert len(closed_doors) ==

Does the contestant want to switch their choice?
if switch:
if verbose:
print ’Contestant switches from door {} ’.format(choice+1)

There are two closed doors left. The contestant will never
choose the same door, so we’ll remove that door as a choice.
available_doors = list(closed_doors) # Make a copy of the list.
available_doors.remove (choice)

Change choice to the only door available.
choice = available_doors.pop()
if verbose:

print ’to {}’.format(choice+1)

Did the contestant win?

won = (choice == winning_door)
if verbose:
if won:
print ’Contestant WON’
else:

13

print ’Contestant LOST’
return won

In [28]: # Run this cell to understand the algorithm.
Change the parameters (especially the second one).

monty_hall(3, True, verbose=True)

Prize is behind door 1
Contestant chooses door 2

Host opens door 3

Contestant switches from door 2
to 1

Contestant WON

Out[28]: True

In [29]: num_trials = 10000
print "Simulating", num_trials, "trials."
won_switch_count = 0

YOUR CODE HERE
Please make sure you don’t set ‘verbose‘ to True,
otherwise the output 2s going to flood your notebook.

for i in range(10000):
if monty_hall(3, True):
won_switch_count += 1

END YOUR CODE HERE

print ’Switching won {0:5} times out of {1} ({2}/ of the time)’.format(\
won_switch_count, num_trials, (won_switch_count / num_trials * 100))

print ’Staying won {0:5} times out of {1} ({2}/ of the time)’.format (\
num_trials-won_switch_count, num_trials, ((num_trials-won_switch_count) / num_trials * 100

Simulating 10000 trials.
Switching won 6652 times out of 10000 (66.52% of the time)
Staying won 3348 times out of 10000 (33.48% of the time)

PASTE YOUR SIMULATION RESULT FROM ABOVE IN THIS CELL

Congratulations! You are done with Virtual Lab 9.

Don’t forget to convert this notebook to a pdf document, merge it with your written homework, and
submit both the pdf and the code (as a zip file) on glookup.

Reminder: late submissions are NOT accepted. If you have any technical difficulty, resolve it early on
or use the provided VM.

14

	Virtual Lab 9 Solution: Intro to Randomness (cont.)
	EECS 70: Discrete Mathematics and Probability Theory, Fall 2014
	Table of Contents

