
lab9sol

November 2, 2014

1 Virtual Lab 9 Solution: Intro to Randomness (cont.)

1.0.1 EECS 70: Discrete Mathematics and Probability Theory, Fall 2014

Due Date: Monday, November 3rd, 2014 at 12pm Name:
Login: cs70-
Instructions:

• Please fill out your name and login above.

• Please leave your answers in the Markdown cells, marked with "YOUR COMMENTS HERE".

• Complete this lab by filling in all of the required functions, marked with "YOUR CODE HERE".

• If you plan to use Python, make sure to go over Tutorial 1: Introduction to Python and IPython
and Tutorial 2: Plotting in Python with Matplotlib before attempting the lab.

• Make sure you run every code cell one after another, i.e. don’t skip any cell. A shortcut for doing this
in the notebook is Shift+Enter. When you finish, choose ‘Cell > Run All’ to test your code one last
time all at once.

• Most of the solution requires no more than a few lines each.

• Please do not hardcode the result or change any function without the "YOUR CODE HERE" mark.

• Questions? Bring them to our Office Hour and/or ask on Piazza.

• Good luck, and have fun!

1.1 Table of Contents

The number inside parentheses is the number of functions or code blocks you are required to fill out for each
question. Always make sure to double check before you submit.

• Introduction

• Part (a): Random Walk (3)

• Part (b): Normalized Random Walk (1)

• Part (c): q-curve (2)

• Part (d): Multiple q-curves (1)

• Part (e): Quartile Values (1)

• Part (f): Quartile Gap (1)

• Part (g): Scale the Gap (2)

• Part (h): Monty Hall (2)

In [1]: %pylab inline

Populating the interactive namespace from numpy and matplotlib

In [2]: from __future__ import division # so that you don’t have to worry about float division

import random

import math

1

Introduction
In this week’s lab, we will continue our coin tossing example, but see it from a different perspective.

Make sure you review the lab solution from Homework 8 before moving on.
Below, you will find sample implementations for some of the functions from last week’s lab.

In [3]: def count_heads(k):

"""

Counts the number of heads in num_flips

"""

return sum([round(random.random()) for _ in range(k)])

In [4]: def count_heads_in_runs(k, n):

"""

Returns a list of length n, where each element is the number

of heads in k flips.

"""

return [count_heads(k) for _ in range(n)]

In [5]: def scaled_run(k, n):

"""

Shifts the center of the horizontal axis to the origin by subtracting

half the number of tosses from the number of heads

"""

return [count_heads(k) - k//2 for _ in range(n)]

Part (a): Random Walk
Let’s change gears a little bit from last time. Consider the following visualization of a sequence of coin

flips. We start at zero. For every head we get, we add one. For every tail we get, we subtract one.
Hence, a sequence of 1000 coin tosses would be a path that starts at (0,0), and then goes to either (1, 1)

or (1,−1), and continues wandering till (1000, y) somewhere. Plot 20 such paths on the same plot based on
randomly flipped coins. Each sample path should have 1000 coin tosses.

What do you observe about the paths?
Hint: First, implement the function rand one, which generates 1 and −1 randomly with roughly 50%

probability each. Then, implement the path(n) function, which returns a list of n elements that starts at 0
and every element thereafter is either one more or one less than the previous one. In Python, you can access
the last element in a list with the syntax lst[-1].

In [6]: def rand_one():

"""

Returns -1 roughly one half of a time, and 1 the other half

YOUR CODE HERE

"""

return -1 if random.random() < 0.5 else 1

In [7]: # Test your implementation by repeatedly running this code cell.

You should see that the value fluctuates between -1 and 1.

rand_one()

Out[7]: 1

2

In [8]: def path(n):

"""

An n-step random walk that starts at 0

YOUR CODE HERE

"""

walk = [0]

for _ in range(1, n):

walk.append(walk[-1] + rand_one())

return walk

In [9]: def partA():

"""

YOUR CODE HERE

"""

for _ in range(20):

plt.plot(path(1000))

plt.title("20 random walks of 1000 coin flips")

plt.xlabel("k")

plt.show()

In [10]: partA()

YOUR COMMENTS HERE:
Part (b): Normalized Random Walk
Notice that the histograms you were plotting earlier were effectively looking at vertical slices in this picture

and asking how many sample paths were crossing through a particular y coordinate. (If we are looking at

3

k tosses, then having exactly h heads is the same as this sample path crossing through (k, h − (k − h)) =
(k, 2h− k))

Now, let’s see what the rescalings we were doing correspond to. The common-set-of-units scaling is what
the previous part corresponded to. How would you change the scaling to correspond to the normalized set
of units in part (e)? (in this plot, a sample path that consists of all heads should basically be a straight line
that stays at the upper-limit — say 1. And a sample path that consists of all tails should be a straight line
that stays at the lower limit – say −1).

Give this new scaling (it will depend on k — so it will change the visual shape of a path) and plot 100
sample paths of 1000 coin tosses each.

Comment on what this suggests relative to the earlier plots.

In [11]: def partB():

"""

YOUR CODE HERE

"""

for _ in range(100):

plt.plot([k/(i+1) for i, k in enumerate(path(1000))])

plt.title("20 normalized random walks of 1000 coin flips")

plt.xlabel("k")

plt.show()

In [12]: partB()

YOUR COMMENTS HERE:
Part (c): q-curve
Shifting gears one more time, we are now going to look at the same basic experiment — tossing a fair

coin k times — in a third way. Let R for a given run be the ratio of heads.

4

Fix k = 1000 to be the number of coin tosses in a run. Let m = 1000 be the number of runs. Plot how
often R ≤ q as a function of q. The vertical axis should be (in linear scale) the fraction of the m runs in
which R ≤ q, while the horizontal scale should have q ranging from 0 to 1.

Hint : Implement the function q curve, which returns the sorted fraction of heads for each of the m runs.
You may find Python’s built-in sorted function helpful here.

In [13]: def q_curve(k, m):

"""

Returns the sorted fraction R <= q for each of the m runs.

YOUR CODE HERE

"""

result = sorted([count_heads(k) / k for _ in xrange(m)])

first_quartile = result[int(m * 0.25)]

second_quartile = result[int(m * 0.5)]

third_quartile = result[int(m * 0.75)]

return result, first_quartile, second_quartile, third_quartile

In [14]: # YOUR CODE HERE

Hint: You can’t use range with floats in Python. In that case,

our good old friend np.linspace will help.

def partC():

"""

YOUR CODE HERE

"""

curve, _, _, _ = q_curve(1000, 1000) # don’t care about the quartile values here yet

y_lim = np.linspace(0, 1, 1000)

plt.plot(curve, y_lim)

plt.title("Ratio of heads as a function of q")

plt.xlabel("q")

plt.ylabel("fraction of m runs where $R \leq q$")

plt.show()

In [15]: partC()

5

YOUR COMMENTS HERE:
Part (d): Multiple q-curves
Repeat the previous part for different values of k and put them all on the same plot. Try k =

2, 10, 50, 100, 500, 1000, 10000.
What do you see? Is this consonant with what you had observed in earlier plots?

In [16]: ks = [2, 10, 50, 100, 500, 1000, 10000]

In [17]: # YOUR CODE HERE

def partD():

"""

YOUR CODE HERE

"""

y_lim = np.linspace(0, 1, 1000)

first_Q, second_Q, third_Q = [], [], []

for k in ks:

curve, first, second, third = q_curve(k, 1000)

plt.plot(curve, y_lim, label=str(k))

Append the quartile values for later parts

first_Q.append(first)

second_Q.append(second)

third_Q.append(third)

plt.title("Ratio of heads in k tosses as a function of q")

6

plt.xlabel("q")

plt.ylabel("fraction of m runs where $R \leq q$")

plt.legend(loc=2)

plt.show()

return first_Q, second_Q, third_Q

In [18]: first_Q, second_Q, third_Q = partD()

YOUR COMMENTS HERE:
Part (e): Quartile Values
Now, think about rescaling the plots in the previous parts to see if there is something common about

this shape. For each k, read off the q values where the curves seem to cross hypothetical horizontal lines
at 0.25, 0.5, 0.75. Call these the quartile markers. Compute these qs for your experiment. Plot them as a
function of k. What do you observe?

In [19]: # YOUR CODE HERE

def partE():

"""

YOUR CODE HERE

"""

plt.plot(ks, first_Q)

plt.plot(ks, second_Q)

plt.plot(ks, third_Q)

plt.title("q quartile markers as a function of k")

plt.ylim(0, 1)

plt.xlabel("k")

7

plt.ylabel("quartile value")

plt.show()

In [20]: partE()

YOUR COMMENTS HERE:
Part (f): Quartile Gap
Notice that the gap between the 0.75 marker and the 0.25 marker is getting smaller as k gets larger.

Notice also that the 0.5 marker seems to be sticking around q = 1
2 . As a scientific problem, suppose you

wanted to discover how indeed this was scaling with k.
Plot the gap between the 0.75 and 0.25 marker as a function of k as a scatter plot. Use all of the

traditional axes combinations: linear-linear, linear-log, log-linear, and log-log. Which one seems to offer
some insight?

In [32]: gap = [third_Q[i] - first_Q[i] for i in range(len(first_Q))]

def plot_quartile_gap(plot_fn, ks, gap):

"""

Plot the quartile gap using plot_fn

"""

plot_fn(ks, gap)

plt.show()

In [33]: def partF():

"""

YOUR CODE HERE

"""

8

plt.figure()

plt.title("Linear-linear quartile gap")

plt.xlabel("k")

plt.ylabel("quartile gap")

plot_quartile_gap(plt.plot, ks, gap)

plt.figure()

plt.title("Log-linear quartile gap")

plt.xlabel("log(k)")

plt.ylabel("quartile gap")

plot_quartile_gap(plt.semilogx, ks, gap)

plt.figure()

plt.title("Linear-log quartile gap")

plt.xlabel("k")

plt.ylabel("log(quartile gap)")

plot_quartile_gap(plt.semilogy, ks, gap)

plt.figure()

plt.title("Log-log quartile gap")

plt.xlabel("log(k)")

plt.ylabel("log(quartile gap)")

plot_quartile_gap(plt.loglog, ks, gap)

In [34]: partF()

9

10

YOUR COMMENTS HERE:
Part (g): Scale the Gap
Based on what you observed in the previous set of plots, conjecture a scaling rule that lets you calculate

the gap between the 0.75 marker and the 0.25 marker as a function of k for the fair coin tosses case. Explain
your derivation in your writeup.

Use this rule to rescale the horizontal axis of the plots from three parts ago. What do you now observe
about the curves for different values of k? By construction, they should be very close to each other in terms
of where they are crossing 0.25, 0.5, 0.75, but what about elsewhere?

Hint : Implement the function q curve norm, which does the same as q curve, except now every point
is normalized using your scaling rule. Think about the previous part and how it can help you come up with
a scaling rule.

This is a challenging question. Don’t worry if you get stuck here.

In [24]: def q_curve_norm(k, m):

"""

Does the same as q_curve, except now every point is

normalized using your scaling rule.

YOUR CODE HERE

"""

return sorted([(count_heads(k) / k - 0.5) * math.sqrt(k) + 0.5 for _ in xrange(m)])

In [35]: def partG():

"""

YOUR CODE HERE

"""

11

y_lim = np.linspace(0, 1, 1000)

for k in ks:

plt.plot(q_curve_norm(k, 1000), y_lim, label=str(k))

plt.xlabel("normalized q")

plt.ylabel("fraction of heads in m runs")

plt.title("Scaled ratio of heads in k tosses as a function of q")

plt.legend(loc=2)

plt.show()

In [36]: partG()

YOUR COMMENTS HERE:
Part (h): Monty Hall
Below, you will find a simple implementation that simulates the Monty Hall problem. There are n doors,

and only one contains the prize. The contestant first picks a door, and then the host Monty will open all
n − 2 doors that don’t contain the prize. The contestant is then given a choice to switch or stay with his
current choice.

Your task will be to simulate 10000 trials of the Monty Hall problem. What is the probability of winning
when the contestant switches? How about when he/she stays? Does it match your expectation and what
was described in lecture and the lecture note? Please report the result in your answer.

Finally, if you want to understand how the algorithm work in general, make sure you set the verbose

parameter to True.

In [27]: def monty_hall(num_doors=3, switch=True, verbose=False):

"""

Carries out the game for one contestant. If ’switch’ is True,

the contestant will switch their chosen door when offered the chance.

Returns True if the simulated contestant won, False otherwise.

12

Doors are numbered from 0 up to num_doors-1 (inclusive).

"""

Randomly choose the door hiding the prize.

winning_door = random.randint(0, num_doors-1)

if verbose:

print ’\nPrize is behind door {}’.format(winning_door+1)

The contestant picks a random door, too.

choice = random.randint(0, num_doors-1)

if verbose:

print ’Contestant chooses door {}’.format(choice+1)

The host opens all but two doors.

closed_doors = list(range(num_doors))

while len(closed_doors) > 2:

Randomly choose a door to open.

door_to_remove = random.choice(closed_doors)

The host will never open the winning door, or the door

chosen by the contestant.

if door_to_remove == winning_door or door_to_remove == choice:

continue

Remove the door from the list of closed doors.

closed_doors.remove(door_to_remove)

if verbose:

print ’Host opens door {}’.format(door_to_remove+1)

There are always two doors remaining.

assert len(closed_doors) == 2

Does the contestant want to switch their choice?

if switch:

if verbose:

print ’Contestant switches from door {} ’.format(choice+1)

There are two closed doors left. The contestant will never

choose the same door, so we’ll remove that door as a choice.

available_doors = list(closed_doors) # Make a copy of the list.

available_doors.remove(choice)

Change choice to the only door available.

choice = available_doors.pop()

if verbose:

print ’to {}’.format(choice+1)

Did the contestant win?

won = (choice == winning_door)

if verbose:

if won:

print ’Contestant WON’

else:

13

print ’Contestant LOST’

return won

In [28]: # Run this cell to understand the algorithm.

Change the parameters (especially the second one).

monty_hall(3, True, verbose=True)

Prize is behind door 1

Contestant chooses door 2

Host opens door 3

Contestant switches from door 2

to 1

Contestant WON

Out[28]: True

In [29]: num_trials = 10000

print "Simulating", num_trials, "trials."

won_switch_count = 0

YOUR CODE HERE

Please make sure you don’t set ‘verbose‘ to True,

otherwise the output is going to flood your notebook.

for i in range(10000):

if monty_hall(3, True):

won_switch_count += 1

END YOUR CODE HERE

print ’Switching won {0:5} times out of {1} ({2}% of the time)’.format(\

won_switch_count, num_trials, (won_switch_count / num_trials * 100))

print ’Staying won {0:5} times out of {1} ({2}% of the time)’.format(\

num_trials-won_switch_count, num_trials, ((num_trials-won_switch_count) / num_trials * 100))

Simulating 10000 trials.

Switching won 6652 times out of 10000 (66.52% of the time)

Staying won 3348 times out of 10000 (33.48% of the time)

PASTE YOUR SIMULATION RESULT FROM ABOVE IN THIS CELL
Congratulations! You are done with Virtual Lab 9.
Don’t forget to convert this notebook to a pdf document, merge it with your written homework, and

submit both the pdf and the code (as a zip file) on glookup.
Reminder: late submissions are NOT accepted. If you have any technical difficulty, resolve it early on

or use the provided VM.

14

	Virtual Lab 9 Solution: Intro to Randomness (cont.)
	EECS 70: Discrete Mathematics and Probability Theory, Fall 2014
	Table of Contents

