
EECS 70 Discrete Mathematics and Probability Theory
Fall 2014 Anant Sahai Homework 3
This homework is due September 22, 2014, at 12:00 noon.

1. Propose-and-Reject Lab
In this week’s Virtual Lab, we will simulate the traditional propose-and-reject algorithm. You will find a
simple implementation of a Person class, where each Person has an identification number, is either male
or female, and has his or her own preference list, in the code skeleton for this question.

Please download the IPython starter code from Piazza or the course webpage, and answer the following
questions.

(a) Using the example from Note 4, page 6, which is shown again below for your convenience, create one
list which contains all the men, and one which contains all the women. Each man or woman needs to
be created using the Person class.

Men Women
1 A B C D
2 A D C B
3 A C B D
4 A B C D

Women Men
A 1 3 2 4
B 4 3 2 1
C 2 3 1 4
D 3 4 2 1

(b) For this question, we’ve given you the code to run the traditional propose-and-reject algorithm where
the men propose to the women. Your task is to create a new version by changing it to women making
proposals. Are the final pairings for the two cases the same?

(c) This question will focus on exploring what happens when we randomize preferences. In the code
skeleton, you will find an implementation of the function create_random_lists, which creates
a random set of preferences.
We’re interested in how often the men-propose and women-propose algorithms return the same pair-
ings. Write a function that generates a random set of preferences for men and women, then runs each
variant of the traditional propose-and-reject algorithm on that set of preferences. For lists of 4 people,
how often do the men-propose and women-propose algorithms agree on the final stable pairings?

(d) Finally, we’re going to explore how long the women-propose algorithm takes as a function of n. In
lecture, we learn that the algorithm must terminate after at most n2 days (we will soon prove a stricter
bound in a later question). Write a function that returns how many days it takes for the traditional
propose-and-reject algorithm to arrive at its stable solution using randomly-generated preference lists.
Try it on some inputs of different size. How quickly does the number of days grow with the input?
Does it grow linearly (at the same rate as n - maybe twice as fast or half as fast), quadratically, loga-
rithmically? If you can’t tell, try graphing some outputs by hand. You do not have to submit any graph,
but it certainly would help defend your claim.

Reminder: When you finish, don’t forget to convert the notebook to pdf and merge it with your written
homework. Please also zip the ipynb file and submit it as hw3.zip.

2. Candy Problem
There are N students standing in a circle, facing the center. Each student is initially issued an even number

EECS 70, Fall 2014, Homework 3 1



of candies. Being the fair and honest students that they are, they come up with the following adjustment
algorithm. First, each student gives half of his or her candies to the student on his or her left. Note that after
this step, some students might have an odd number of candies. Next, those students with an odd number of
candies will get one more candy from the teacher. The students repeat the adjustment algorithm and stop
when everyone has the same number of candies.

(a) Run the algorithm for the case where there are 6 students and the initial number of candies, in clockwise
order, is: {2, 4, 4, 2, 6, 8}.

(b) By the Well-Ordering Principle, before we begin the adjustment algorithm, there is a minimum number
of candies possessed by any student and a maximum number of candies possessed by any student.
Since these quantities are even, we let 2n denote the minimum number of candies and let 2m denote
the maximum number of candies in the initial candy distribution. Prove that the number of candies
possessed by each student is still between 2n and 2m after one iteration of the adjustment algorithm.

(c) Now, suppose the minimum number of candies that any student has immediately after iteration i is 2k,
and that p students have exactly 2k candies. Prove that, provided the algorithm doesn’t terminate im-
mediately after iteration i, less than p students will have exactly 2k candies immediately after iteration
i+1.

(d) Does the adjustment algorithm always terminate in a finite number of iterations, or could students be
trading candies with each other forever? Explain your reasoning.

3. Indifferent Attitudes
In the real world, it is perhaps a bit unrealistic to expect that each man and woman can provide a strict
preference ordering of all his or her potential mates. To reflect this, let’s suppose we allow each person’s
preference list to contain ties. Mathematically, a set W of k women forms a tie of length k in the preference
list of man m if m does not prefer wi to w j for any wi,w j ∈W (i.e., m is indifferent between wi and w j), while
for any other woman w not in W , either m prefers w to all women in W or m prefers all the women in W to
w. A tie on a woman’s list is defined analogously. We will call this the Stable Marriage Problem with Ties.

Recall that in the original Stable Marriage Problem, where preference lists are strictly ordered, it is always
possible to find a stable matching, where a matching is stable if there is no man x and woman y such that
x and y both prefer each other over their current partners. However, for the Stable Marriage Problem with
Ties, 3 different types of stability are possible:

• Weak stability. A matching is weakly stable if there is no couple x and y, each of whom strictly
prefers the other to their current partner in the matching.

• Strong stability. A matching is strongly stable if there is no couple x and y such that x strictly prefers
y to his or her partner, and y either strictly prefers x to his or her partner or is indifferent between them.

• Super-stability. A matching is super-stable if there is no couple x and y, each of whom either strictly
prefers the other to his/her partner or is indifferent between them.

It is then natural to ask whether these different types of stable matchings always exist in a given instance of
the Stable Marriage Problem with Ties. Answer the following.

(a) For the Stable Marriage Problem with Ties, does a weakly stable matching always exist? Either prove
the statement or provide a counterexample.

(b) For the Stable Marriage Problem with Ties, does a strongly stable matching always exist? Either prove
the statement or provide a counterexample.
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(c) For the Stable Marriage Problem with Ties, does a super-stable matching always exist? Either prove
the statement or provide a counterexample.

(d) Assume we are given an instance of the stable marriage problem with ties, along with a weakly stable
matching M for that instance. Upon getting married to their partners assigned in M, each person’s
preferences change slightly and the married partner becomes preferred over anyone they were tied
with, but doesn’t change in rank otherwise. Is M now super-stable?

4. Karl and Emma fight!

(a) Karl and Emma are having a disagreement regarding the traditional propose-and-reject algorithm.
They both agree that it favors men over women. But they disagree about what, if anything, can be
done without changing the ritual form of men proposing, women rejecting, and people getting married
when there are no more rejections.
Karl mansplains: “It’s hopeless. Men are obviously going to propose in the order of their preferences.
It’s male optimal so why would they do anything else? As far as the women are concerned, given that
they face a specific choice of proposals at any given time, they are obviously going to select the suitor
they like the most. So unless we smash the system entirely, it is going to keep all women down.”
Emma says: “People are more perceptive and forward-looking that you think. Women talk to each
other and know each other’s preferences regarding men. They can also figure out the preferences of
the men they might be interested in. A smart and confident woman should be able to do better for
herself in the long run by not trying to cling to the best man she can get at the moment. By rejecting
more strategically, she can simultaneously help out both herself and her friends.”
Is Emma ever right? If it is impossible, prove it. If it is possible, construct and analyze an example
(a complete set of people and their preference lists) in which a particular woman acting on her own
(by not following the ordering of her preference list when deciding whether to accept or reject among
multiple proposals) can get a better match for herself without hurting any other woman. Show how she
can do so. The resulting pairing should also be stable.

(b) Karl and Emma have another disagreement! Karl claims that if a central authority was running the
propose-and-reject algorithm then cheating the system might improve the cheater’s chances of getting
the more desirable candidate. The cheater need not care about what happens to the others.
Karl says: “Lets say there exists a true preference list. A prefers 1 to 2 but both are low on her
preference list. By switching the reported preference order among 1 and 2, she can end up with 3
whom she prefers over 1 and 2 which wasn’t possible if she did not lie. Isn’t that cool?”
Emma responds: “That’s impossible! In the traditional propose-and-reject algorithm switching the
preference order 1 and 2 cannot improve A’s chance to end up with 3.”
Either prove that Emma is right or give an example of set of preference list for which a switch would
improve A’s husband (that is, she gets matched with 3), and hence proving Karl is right.

5. TeleBears
In the Course Enrollment Problem, we are given n students and m discussion sections. Each discussion
section u has some number, qu of seats, and we assume that the total number of students is larger than the
total number of seats (i.e. ∑

m
u=1 qu < n). Each student ranks the m discussion sections in order of preference,

and the instructor for each discussion ranks the n students. Our goal is to find an assignment of students to
seats (one student per seat) that is stable in the following sense:

• There is no student-section pair (s,u) such that s prefers u to her allocated discussion section and the
instructor for u prefers s to one of the students assigned to u. (This is like the stability criterion for
Stable Marriage: it says there is no student-section pair that would like to change the assignment.)
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• There is no discussion section u for which the instructor prefers some unassigned student s to one of
the students assigned to u. (This extends the stability criterion to take account of the fact that some
students are not assigned to discussions.)

Note that this problem is almost the same as the Stable Marriage Problem, with two differences: (i) there
are more students than seats; and (ii) each discussion section generally has more than one seat.

(a) Explain how to modify the propose-and-reject algorithm so that it finds a stable assignment of students
to seats.

(b) State a version of the Improvement Lemma (see Lecture Note 4) that applies to your algorithm, and
prove that it holds.

(c) Use your Improvement Lemma to give a proof that your algorithm terminates, that every seat is filled,
and that the assignment your algorithm returns is stable.

6. Long Courtship

(a) Run the traditional propose-and-reject algorithm on the following example:

Man Preference List
1 A > B >C > D
2 B >C > A > D
3 C > A > B > D
4 A > B >C > D

Woman Preference List
A 2 > 3 > 4 > 1
B 3 > 4 > 1 > 2
C 4 > 1 > 2 > 3
D 1 > 2 > 3 > 4

(b) We know from the notes that the propose-and-reject algorithm must terminate after at most n2 pro-
posals. Prove a sharper bound showing that the algorithm must terminate after at most n(n− 1)+ 1
proposals. Is this instance a worst-case instance for n = 4? How many days does the algorithm take on
this instance?

7. Better Off Alone

In the stable marriage problem, suppose that some men and women have standards and would not just settle
for anyone. In other words, in addition to the preference orderings they have, they prefer being alone to
being with some of the lower-ranked individuals (in their own preference list). A pairing could ultimately
have to be partial, i.e., some individuals would remain single.

The notion of stability here should be adjusted a little bit. A pairing is stable if

• there is no paired individual who prefers being single over being with his/her current partner,

• there is no paired man and paired woman that would both prefer to be with each other over their current
partners, and

• there is no single man and single woman that would both prefer to be with each other over being single.

(a) Prove that a stable pairing still exists in the case where we allow single individuals. You can approach
this by introducing imaginary mates that people “marry” if they are single. How should you adjust the
preference lists of people, including those of the newly introduced imaginary ones for this to work?

(b) As you saw in the lecture, we may have different stable pairings. But interestingly, if a person remains
single in one stable pairing, s/he must remain single in any other stable pairing as well (there really is
no hope for some people!). Prove this fact by contradiction.
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8. Write Your Own Problem

Write your own problem related to this week’s material and solve it. You may still work in groups to
brainstorm problems, but each student should submit a unique problem. What is the problem? How to
formulate it? How to solve it? What is the solution?
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