EECS 70 Discrete Mathematics and Proloaloility Theory
Fall 2014 Anant Sahai Homework 4

This homework is due September 29, 2014, at 12:00 noon.

. Modular Arithmetic Lab

In Python, you can perform many common modular arithmetic operations. For example, the modular reduc-
tion operator is represented by the % operator (e.g. 7 % 2 returns 1). In this week’s Virtual Lab, we will
explore a few basic modular arithmetic and primality testing algorithms, as well as how to implement them
in Python.

Please download the IPython starter code from Piazza or the course webpage, and answer the following
questions.

(a) Implement the function mod_exp, which takes three parameters x,y, and m, and computes (x’) mod
m using repeated squaring. Do NOT use Python’s built-in pow function.

(b) Implement the function gcd, which takes a pair of natural numbers x,y, and computes their greatest
common divisor.

(c) Implement the egcd function, which takes a pair of natural numbers x >=y, and returns a triple of
integers (d,a,b) such that d = ged(x,y) = ax+by.
Use the function egcd to find the positive inverse of 117 mod 103, of 17947 mod 222, and of 1812647
mod 1234567.

(d) Implement the function is_prime, which checks if a positive number x is a prime number. A naive
implementation would be fine here; we’ll look at more efficient implementations in later questions.

(e) The Sieve of Eratosthenes is a simple, ancient algorithm for finding all prime numbers up to any given
limit. It does so by iteratively marking as composite (i.e. not prime) the multiples of each prime,
starting with the multiples of 2.

Implement the function sieve, which takes a positive integer n, and returns a list of all primes less
than or equal to n. A sample execution of the algorithm is given in the code skeleton.

Reminder: When you finish, don’t forget to convert the notebook to pdf and merge it with your written
homework. Please also zip the ipynb file and submit it as hw4 . zip.

. Just Can’t Wait

Joel lives in Berkeley. He mainly commutes by public transport, i.e., bus and BART. He hates waiting while
transferring, and he usually plans his trip so that he can get on his next vehicle immediately after he gets off
the previous one (zero transfer time). Tomorrow, Joel needs to take an AC Transit bus from his home stop
to the Downtown Berkeley BART station, then take BART into San Francisco.

(a) The bus arrives at Joel’s home stop every 22 minutes from 6:05am onwards, and it takes 10 minutes
to get to the Downtown Berkeley BART station. The train arrives at the station every 8 minutes
from 4:25am onwards. What time is the earliest bus he can take to be able to transfer to the train
immediately? Show your work. (Please do not find the answer by listing all the schedules.)

EECS 70, Fall 2014, Homework 4

s

(b) Joel has to take a Muni bus after he gets off the train in San Francisco. The commute time on BART
is 33 minutes, and the Muni bus arrives at the San Francisco BART station every 17 minutes from
7:12am onwards. What time is the earliest bus he could take from Berkeley to ensure zero transfer
time for both transfers? If all bus/BART services stop just before midnight, is it the only bus he can
take that day? Show your work.

3. Solution for ax = b mod m
In the lecture notes, we proved that when gcd(m,a) = 1, a has a unique multiplicative inverse, or equivalently
ax =1 mod m has exactly one solution x (modulo 7). The proof of the unique multiplicative inverse (theorem
5.2) actually proved that when gcd(m,a) = 1, the solution of ax = b mod m with unknown variable x is
unique. Now let’s consider the case where gcd(m,a) > 1 and see why there is no unique solution in this
case. Let’s consider the general solution of ax = b mod m with ged(m,a) > 1.

(a) Let ged(m,a) =d. Prove that ax = b mod m has a solution (that is, there exists an x that satisfies this
equation) if and only if =0 mod d.

(b) Let ged(m,a) =d. Assume b =0 mod d. Prove that ax = b mod m has exactly d solutions (modulo m).

(c) Solve for x: 77x =35 mod 42.

4. Pentagons, Pentagrams, and Pythagoreans: a high-school geometry proof of the existence of irrational
numbers by way of Euclid’s Algorithm
According to historical accounts, the pentagram # was commonly used as a recognition sign between the
Pythagoreans, the members of Pythagoras’ school (about 500 BC). In this problem, we will establish a key
property of this figure in relation to the Euclidean algorithm, which offers a mathematical perspective on the
fascination with this symbol.

Recall that two non-negative real numbers (think of segment lengths) a,b are said to be commensurable if
there exists a third real g such that both @ and b are some multiple of g: 3k,k' e N:a=kg,b=k'g. For
engineering practices, it is extremely useful to have such a g, as it stands for a common unit of measurement
between the two lengths. A pillar of Pythagoras teaching was that any two segment lengths are commensu-
rable.

(a) Let us recall the Euclidean algorithm on real non-negative inputs a,b. Without loss of generality, let
us assume a > b. The Euclidean algorithm, which we denote by GCD, goes as follow:

i. If b =0 then return a.
ii. Else return GCD(b,a—|a/b|b) (where x — | x| is the floor function).

Show that if @ and b are commensurable, then the Euclidean algorithm terminates for these inputs.

(b) Let ABCDE be aregular pentagon, meaning AB=BC =CD = DE = EA and EAB=ABC =BCD=CDE =
DEA; see Figure Given that the sum of the interior angles of a pentagon is 540°, prove that EA < EB.
(Hint: You might find the Law of Sines useful.)

(c) Show that A’AB’, EAB’, and EE'B’ are isosceles triangles.

(d) LetA’, ..., E' be the intersection points of the chords as in Figure[1} Show that A’B'C’'D’E' is a regular
pentagon, i.e., all interior angles are equal and all sides are equal in length.

EECS 70, Fall 2014, Homework 4 2

10.

11.

12.

13.

14.

(e) Express E’A’ and E'B’

(f) Using the previous elements, show that EB and EA are incommensurable. (In modern terms, we would

el

Figure 1: Regular pentagon

separately in terms of EA and EB.

say that EB/EA is irrational.)

Midterm question 3
Re-do midterm question 3.

Midterm question 4
Re-do midterm question 4.

Midterm question 5
Re-do midterm question 5.

Midterm question 6
Re-do midterm question 6.

Midterm question 7
Re-do midterm question 7.

Midterm question 8
Re-do midterm question 8.

Midterm question 9
Re-do midterm question 9.

Midterm question 10
Re-do midterm question 10.

Midterm question 11
Re-do midterm question 11.

Midterm question 12
Re-do midterm question 12.

EECS 70, Fall 2014, Homework 4

15. Midterm question 13
Re-do midterm question 13.

16. Write your own problem
Write your own problem related to this week’s material and solve it. You may still work in groups to
brainstorm problems, but each student should submit a unique problem. What is the problem? How to
formulate it? How to solve it? What is the solution?

EECS 70, Fall 2014, Homework 4 4

