
EECS 70 Discrete Mathematics and Probability Theory
Fall 2014 Anant Sahai Homework 11
This homework is due November 17, 2014, at 12:00 noon.

1. Section Rollcall!

In your self-grading for this question, give yourself a 10, and write down what you wrote for parts (a) and
(b) below as a comment. Put the answers in your written homework as well.

(a) What discussion did you attend on Monday last week? If you did not attend section on that day, please
tell us why.

(b) What discussion did you attend on Wednesday last week? If you did not attend section on that day,
please tell us why.

2. Biased Coins, Birthday Paradox, and Stirling’s Approximation Lab

Up until this point, everything that you have done in the last three virtual labs is something that you could’ve
naturally discovered yourself as something worth trying. The data is speaking directly to the experimentalist
in you. However, discovering an actual formula for the shape of this “cliff-face” is something that actually
requires a theoretical investigation that is related to counting, Fourier Transforms, and Power Series. Guess-
ing its exact shape is not something that comes very naturally on experimentalist intuition alone.

In this week’s lab, we will simply provide you with the right curve and continue from last week’s lab on
biased coins. Unless specified otherwise, you can assume the same configurations from last week’s lab.
In other words, the coin is biased with P(head) = 0.7, the number of tosses are (k = 10,100,1000,4000),
respectively, and the number of trials is m = 1000. Make sure you review the lab solution from Homework
10 before moving on.

In addition, we will also look at the Birthday Paradox and Stirling’s Approximation. Please come back to
the last three parts of the lab when you are working on Question 8.

For each part, students who want to can choose to completely rewrite the question. Basically, you can come
up with your own formulation of how to do a series of experiments that result in the same discoveries. Then,
write up the results nicely using plots as appropriate to show what you observed. You can also rewrite the
entire lab to take a different path through as long as they convey the key insights aimed at in each part.

Please download the IPython starter code from Piazza or the course webpage, and answer the following
questions.

(a) Plot
∫ d
−∞

1√
2π

e−
x2
2 dx overlaid with the normalized cliff-face shapes you had plotted in last week’s lab.

This integral is related to something called the Error Function. What do you observe?
This is the heart of the Central Limit Theorem as applied to coin tosses.

Hint: Implement the function normal, which takes a real number x and returns 1√
2π

e−
x2
2 . Then,

implement the function integrate_normal(d), which integrates the above function from −∞ to
d. In Python, you can use scipy.integrate.quad.
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Solutions: We can see that the theoretical curve fits the shape perfectly, and the zigzags smooth out
as k increases.

(b) Now, since you had realized earlier that the cliff-faces and the histograms have some natural relation-

ship with each other, how would you naturally overlay a smooth plot of 1√
2π

e−
x2
2 to the normalized

histograms. What does this mean?
Hint: There’s a parameter for plt.hist() you learned in HW7 that you can use to normalize the
histogram. Also, use a bin size of 0.2.
Solutions: For larger values of k, the bell-shaped curve overlays almost perfectly with the histograms.
This suggests that integrating these histograms will yield the cliff-face shapes plotted above. It also
suggests that the probability of getting certain numbers of heads is related to the bell-shaped curve.

(c) Another interesting pattern that you had seen in the previous Virtual Labs was the exponential drop
in the frequencies of certain rare events. For an exponential drop, the most interesting thing is to
understand the rate of the exponential — or the relevant slope on the Log-Linear plot.
For a coin with probability p of being heads, we are interested in the frequency by which tossing k
such coins results in more than ak heads (where a is a number larger than p). We are interested in
p = 0.3,0.7 and a = p+0.05, p+0.1. Take m = 1000 and plot the natural log of the frequencies these
deviations against k (ranging from 10 to 200). Approximately extract the slopes for all four of these.
Compare them in a table against the predictions of the following formula (which we will derive later
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in the course).

D(a||p) = a ln
a
p
+(1−a) ln

1−a
1− p

.

This expression is called the Kullback-Leibler divergence and is also called the relative entropy.
Finally, add e−D(a||p)k to the plots (there should be 4 of these) you have made as straight lines for
immediate visual comparison. This straight line is called a “Chernoff Bound” on the probability in
question.
What do you observe?
Hint: First, implement the function KL, which computes D(a||p) using the given formula. To fit a line
in Python, you can use np.polyfit.
There will probably be some 0 values, which will mess up this fitting, so you can replace the zeros
with 10−3.
Solutions: After fitting lines to the Log-Linear plots below, we obtain the following table.

p,a fitted slope D(a||p)
0.3,0.35 -0.00865 0.00578
0.3,0.4 -0.02646 0.02258
0.7,0.75 -0.00922 0.00616
0.7,0.8 -0.02989 0.02573

We can see that the slope of the fitted lines are very close to the negative of the KL divergence. Also,
the table values for p+ 0.05 are quite similar, and the values for p+ 0.1 are also similar. In the plot,
we can see that the function e−D(a||p)k looks like it runs parallel to the fitted lines for each p,a pair.

(d) During your first week of Charm School (CS), you want to find fellow CS students who have the
same birthday. Let’s switch gears to an interesting problem studied in Lecture Note 12: the Birthday
Paradox. This interesting phenomenon concerns the probability of two people in a group of m people
having the same birthdays. This probability is given by

P(Ac) = 1− 365×364× . . .× (365−m+1)
365m = 1− 365!

(365−m)!365m

where

P(A) =
365!

(365−m)!365m =

(
1− 1

365

)
×
(

1− 2
365

)
× . . .×

(
1− m−1

365

)
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and P(A) is the probability that no two people have the same birthday.
For m = 10,23,50,60, randomly generate birthdays by uniformly picking m numbers between 1 and
365. Do this 1000 times for each value of m. Record how many trials have at least 2 same birthdays.
Plot this fraction vs. m using a bar chart. What do you observe?
Hint: First, implement the function has_duplicate, which returns True if a list contains any re-
peated element and False otherwise. Then, implement the function gen_birthday(m), which
generates random birthday for m people.
Solutions: As expected from Note 12, we see that for 23 people, the probability of at least two people
having the same birthday is approximately 50%. For 60 people, it is approximately 99%!

(e) We will now calculate the probability of having two people with the same birthday empirically, and
plot the result against the expected probability, which is derived in Note 12.
Implement the function birthday_formula(m), which calculates the probability of at least two
people having the same birthday among m people.
Plot the empirical result (you can assume 1000 trials) v.s. the analytical result (birthday_formula(m)),
for m = [1,100] people. What do you observe about the two curves? What happens at m = 23 and
m = 60? Is this consistent with what we previously knew about the Birthday Paradox?
Solutions:
The two curves align with each other almost perfectly. At m = 23, we can see that there’s a 50%
probability of having at least two people with the same birthday. At m = 60, both curves slowly
approach and converge to 1, so it’s almost certain to have at least two people with the same birthday.
This is consistent with what we previously studied in lecture – it is indeed a remarkable phenomenon!
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(f) Now approximate P(A) using Stirling’s approximation for n! and plot the approximated P(Ac) = 1−
P(A) as a function of m. Stirling’s approximation is given by

n!≈
√

2πn
(n

e

)n
.

Plot the analytical result from the previous part and the approximated result in the same figure. What
do you observe?
Hint: Implement the function birthday_stirling, which computes the probability that no two
people have the same birthday given that there are m birthdays using Stirling’s approximation.
That said, don’t use Stirling’s approximation directly! Simplify your expression after using the ap-
proximation as much as possible before you implement the birthday_stirling function, or the
large values will blow up your computer.
Solutions: First, let’s derive the formula for Stirling’s approximation to the Birthday Paradox. We
know from the previous part that P(A) = 365!

(365−m)!365m . Let’s apply Stirling’s approximation to this
expression.

P(A) =
365!

(365−m)!365m

≈
√

2π(365)(365
e )365√

2π(365−m)(365−m
e )365−m365m

=

√
365

365−m
e365−m

e365
365365−m

(365−m)365−m

=

√
365

365−m
e−m (365−m)m−365

365m−365

=

√
365

365−m
e−m(1− m

365
)m−365

Plugging the final expression to the birthday_stirling function, we have
math.sqrt(365/(365-m))*math.pow(1-m/365, m-365)*math.pow(math.e,-m)

After plotting the two curves, we observe that they align perfectly on top of each other. This shows
that Stirling’s approximation is very powerful at approximating n!.
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(g) Lastly, let’s come back to the problem of counting the number of ways to throw m balls into n
bins. Suppose the number of balls in each bin is a nonnegative integer, implement the function
permutation(m,n), which generates all possible permutations of throwing m balls into n bins.
For example, permutation(2,3) should return
[[0,0,2],[0,1,1],[0,2,0],[1,0,1],[1,1,0],[2,0,0]].
How would you change your implementation if we now require each bin to contain a positive number
of balls?
Hint: Use recursion. You should have three base cases.
Solutions: See lab11sol.pdf for the implementation. If each bin must contain a positive number of
balls, let’s pretend to put one ball in each bin first. We now have m− n balls left, and the problem is
the same as before. In other words, we just need to set m = m−n in the beginning and change nothing
else in our implementation.

(h) Question 8, part (a)

(i) Question 8, part (h)

(j) Question 8, part (j)

Reminder: When you finish, don’t forget to convert the notebook to pdf and merge it with your written
homework. Please also zip the ipynb file and submit it as hw11.zip.

3. Picking CS Classes

The EECS (Elegant Etiquette Charm School) department has d different classes being offered in Fall 2014.
These include classes such as dressing etiquette, dining etiquette, and social etiquette, etc. Let’s assume that
all the classes are equally popular and each class has essentially unlimited seating! Suppose that c students
are enrolled this semester and the registration system, EleBEARS (Elegant Bears), requires each student to
choose a class s/he plans to attend.

(a) What is the probability that a given student chooses the first class, dressing etiquette?
Solutions: There are d different choices for each student. The probability of choosing “Dressing
etiquette" class is 1

d .

(b) What is the probability that a given class is chosen by no student?
Solutions: The probability a given student of choosing a class is 1

d and hence the probability of a
given student not choosing the class is d−1

d . Each student chooses the class independently and there
are c students. Hence the probability of no student choosing the class is

(d−1
d

)c
.

(c) If there are d = 20 classes, what should c be in order for the probability to be at least one half that (at
least) two students enroll in the same class?
Solutions: From Note 14, we know that for d bins, the probability of no collision is less than 1

2 for
approximately b1.177

√
dc balls. The problem of at least two students enrolling in the same class can

be viewed as at least one collision ocurring for d = 20 bins. Thus, in order for this probability to be
at least 1

2 , the number of students needed is approximately c =
⌈
1.177

√
20
⌉
, which gives us c = 5

students.
If we list out the exact values of probabilities of no collision for varying values c, we get the following
results:
For c = 1, obviously P(no collision) = 1
For c = 2, the second student has 20−1 = 19 choices, so P(no collision) = 19

20
For c = 3, the second student has 19 choices and the third student has 18 choices, P(no collision) =
19×18

20 = 342
400
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Similarly,
For c = 4 P(no collision) = 19×18×17

203 = 5814
8000

For c = 5, P(no collision) = 19×18×17×16
204 = 93024

160000
For c = 6, P(no collision) = 19×18×17×16×15

205 = 139536
320000 , which is finally less than 1

2 .
Hence it takes at least c = 6 students for the probability of collision to be at least half, very close to
our approximation of c = 5 students.

4. Sock etiquette

In your second week of Charm School you learn that you should only wear matching pair of socks. In each
pair, both socks must be of the same color and pattern. But all of them are in one big basket and now you
have to take a pair out. Let’s say you own n pairs of socks which are all perfectly distinguishable (no two
pairs have the same color and pattern). You are now randomly picking one sock after the other without
looking at which one you pick.

(a) How many distinct subsets of k socks are there?
Solutions: You could have interpreted the question to mean either that left and right socks are distin-
guishable from each other, or they are indistinguishable from each other.

For distinguishable left and right socks: We are picking k socks from 2n distinguishable socks, so
there are

(2n
k

)
= 2n!

(2n−k)!k! distinct subsets of k socks.

For indistinguishable left and right socks: This is a bit trickier. One way is to say that, for values
i ∈ {0, . . . ,bk/2c}, first choose i pairs and take both socks from these pairs, and then choose k−2i out
of the remaining n− i pairs and take one sock from these pairs. This gives the answer

bk/2c

∑
i=0

(
n
i

)(
n− i
k−2i

)
.

You could have also told a different story and come up with an equation that looks different, but still
gives you the same answer. For example, for i ∈ {0, . . . ,bk/2c}, you take k− i distinct socks (no two
from the same pair), and then choose i out of those k− i and add their matching socks to the subset.
This gives the answer

bk/2c

∑
i=0

(
n

k− i

)(
k− i

i

)
,

which is the same as the previous formula.

(b) How many distinct subsets of k socks which do not contain a pair are there?
Solutions:
When k > n, there are exactly 0 subsets of k distinct socks by the pigeonhole principle. Let’s consider
the case of interest when k ≤ n.

For distinguishable left and right socks: One can construct a subset of k ≤ n socks which does not
contain a pair by the following iterative process. Begin by picking any sock. While the number of
picked socks is less than k, pick a sock belonging to a pair which has not yet appeared. In this process,
we have 2n choices for the first sock, then 2(n−1) choices for the second one (as we can not pick the
first sock again, nor pick the sock matching the first one), then 2(n−2) for the second sock, etc. Since

EECS 70, Fall 2014, Homework 11 7



we are counting subsets and the ordering does not matter, we divide everything by the number of ways
to permute these k distinct socks, namely k!. Hence, there are

1
k!
× (2n×2(n−1)×2(n−2)×·· ·×2(n− k+1)) =

1
k!
× 2kn!

(n− k)!

= 2k
(

n
k

)
such subsets.

For indistinguishable left and right socks: In this case, the answer is just
(n

k

)
, since we can just take

1 sock from each pair and count the ways to make subsets of size k from this set.

(c) What is the probability of forming at least one pair when picking k socks out of the basket?
Solutions: For distinguishable left and right socks:
We have:

P(there exists one pair of socks in set of k) = 1−P(there is no pair of socks in the set of k)

= 1− |{k (distinct) all unpaired socks}|
|{k (distinct) socks}|

= 1−
2k
(n

k

)(2n
k

)
= 1− 2kn!(2n− k)!

(n− k)!(2n)!

You will notice that the k! terms simplify, so we could have counted the ordered versions of questions
a) and b) instead and obtained the same result.

For indistinguishable left and right socks: In this case, we can’t use a counting argument, since
different combinations are no longer equally likely, e.g., the probability you choose 1 of sock type 1
and 1 of sock type 2 is not the same as the probability that you choose 2 of sock type 1. We can,
however, still use an independence argument, just like we did for collisions of balls in bins (recall
Discussion 11M). In this case, let a “collision” mean that we pick two socks from the same pair. We
will pick socks one at a time.
The probability of having no collisions when we pick the first sock is 1. For the second sock, the
probability of no collisions is 2n−2

2n−1 , since we have 2n− 1 socks left to choose from and (2n− 1)− 1
of them won’t result in a collision. For the third sock we pick, the probability of no collisions is 2n−4

2n−2 ,
since we have 2n−2 socks left to choose from and (2n−2)−2 of them won’t result in a collision (we
can’t pick the two that we’ve already picked). Continuing this pattern, we can see that the probability
of picking k socks with no collisions, assuming k ≤ 2n, is

k−1

∏
i=0

2n−2i
2n− i

= 2k
k−1

∏
i=0

n− i
2n− i

= 2k n!/(n− k)!
(2n)!/(2n− k)!

=
2kn!(2n− k)!
(n− k)!(2n)!

,

and therefore

P(there exists one pair of socks in set of k) = 1−P(there is no pair of socks in the set of k)

= 1− 2kn!(2n− k)!
(n− k)!(2n)!

,
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which is the same answer we got if we considered left and right socks to be distinguishable. It is
important to recognize why, at an intuitive level, the probability is the same for both cases. We can
pretend that someone secretly marks the right and left socks differently. But the person picking socks
randomly can’t see the marks and doesn’t need to in order to pick a sock uniformly. A pair is a pair.
So the probability must be the same.

(d) Now, in a different experiment, suppose there is exactly one sock of each pair in the basket (so there
are n socks in the basket) and we sample (with replacement) k socks from the basket. What is the
probability that we pick the same sock at least twice in the course of the experiment?
Solutions: This is basically the birthday problem with n days and k people. The number of ways
to sample k socks with replacement is nk. The number of ways to sample k socks with replacement
without repetition is n× (n−1)×·· ·× (n−k+1) = n!

(n−k)! . Hence, the probability that we sample the
same sock at least twice in the course of the experiment is:

1− n!
(n− k)!nk .

5. Drunk man

Imagine that you have a drunk man moving along the horizontal axis (that stretches from x=−∞ to x=+∞).
At time t = 0, his position on this axis is x = 0. At each time point t = 1, t = 2, etc., the man moves forward
(that is, x(t +1) = x(t)+1) with probability 0.5, backward (that is, x(t +1) = x(t)−1) with probability 0.3,
and stays exactly where he is (that is, x(t +1) = x(t)) with probability 0.2.

(a) What are all his possible positions at time t, t ≥ 0?
Solutions: Clearly, by time t, the man could have moved at most t positions to the right, and at most
t positions to the left. Furthermore, within this range [−t, t], the man could be occupying any integer
position. Therefore, the possible values for the position x(t) of the man at time t are exactly the integers
in the closed range [−t, t].

(b) Calculate the probability of each possible position at t = 1.
Solutions: Clearly, at time t = 1, the man could be either in position −1, or in position 0, or in
position 1. We know the man starts at position 0 at t = 0, and at time t = 1, he has taken at most 1 step;
if this step were taken backward (w.p. 0.3), he would be in position −1, and if this step were forward
(w.p. 0.5), he would be in position +1. And if he had chosen to remain wherever he was (w.p. 0.2),
he would be in position 0. There is no other way he could have been in any of these positions. So, his
possible positions are [−1, 0, 1], with probabilities [0.3, 0.2, 0.5] respectively.

(c) Calculate the probability of each possible position at t = 2.
Solutions: From the discussion above, at time t = 2, the man can be in any one of the 5 positions
[−2, −1, 0, 1, 2]. The probability associated with each of these positions can be calculated from the
probabilities that we just computed above (for the man’s position at time t = 1).

For example, what is the probability that the man is in position −2 at time 2? Clearly, this can happen
under only one circumstance: the man should have been in position−1 at time 1, and moved backwards
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at time 2. Thus we have:

P(x(2) =−2) = P(x(1) =−1∩man moves backward at t = 2)

= P(man moves backward at t = 2 | x(1) =−1)×P(x(1) =−1)

= 0.3×0.3

= 0.09.

In general, using the law of total probability, we can write the probability that the man is in position i
at time t +1 as

P(x(t +1) = i)

=P(x(t +1) = i|x(t) = i−1)×P(x(t) = i−1)+P(x(t +1) = i|x(t) = i+1)×P(x(t) = i+1)

+P(x(t +1) = i|x(t) = i)×P(x(t) = i)

=0.5×P(x(t) = i−1)+0.3×P(x(t) = i+1)+0.2×P(x(t) = i).

(1)

Now, using (1),

P(x(2) =−1)

=P(x(2) =−1|x(1) =−2)×P(x(1) =−2)+P(x(2) =−1|x(1) = 0)×P(x(1) = 0)

+P(x(2) =−1|x(1) =−1)×P(x(1) =−1)

=0+0.3×0.2+0.2×0.3

=0.12.

Doing this for the rest of the values, we get

P(x(2) = 0)

=P(x(2) = 0|x(1) =−1)×P(x(1) =−1)+P(x(2) = 0|x(1) = 1)×P(x(1) = 1)

+P(x(2) = 0|x(1) = 0)×P(x(1) = 0)

=0.5×0.3+0.3×0.5+0.2×0.2

=0.34.

P(x(2) = 1)

=P(x(2) = 1|x(1) = 0)×P(x(1) = 0)+P(x(2) = 1|x(1) = 2)×P(x(1) = 2)

+P(x(2) = 1|x(1) = 1)×P(x(1) = 1)

=0.5×0.2+0+0.2×0.5

=0.2.

P(x(2) = 2)

=P(x(2) = 2|x(1) = 1)×P(x(1) = 1)+P(x(2) = 2|x(1) = 2)×P(x(1) = 2)

=0.5×0.5+0

=0.25.

Notice that the 5 probabilities above add up to 1, as we would expect.
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(d) Calculate the probability of each possible position at t = 3.
Solutions: From the discussion above, at time t = 3, the man can be in any one of the 7 positions −3,
−2, −1, 0, 1, 2, or 3. The probability associated with each of these positions can be calculated from
the probabilities that we just computed above (for the man’s position at time t = 2).

The calculations are carried out in exactly the same way as in the previous part, by considering all
possible ways in which the man can occupy position x at time 3, for each x satisfying −3≤ x≤ 3.

P(x(3) =−3)

=P(x(3) =−3|x(2) =−2)×P(x(2) =−2)+P(x(3) =−3|x(2) =−3)×P(x(2) =−3)

=0.3×0.09+0

=0.027.

P(x(3) =−2)

=P(x(3) =−2|x(2) =−3)×P(x(2) =−3)+P(x(3) =−2|x(2) =−1)×P(x(2) =−1)

+P(x(3) =−2|x(2) =−2)×P(x(2) =−2)

=0.3×0.12+0.2×0.09

=0.054.

Proceeding in a similar fashion, the probabilities for the man to be in positions −3, −2, −1, 0, 1, 2,
and 3 are 0.027, 0.054, 0.171, 0.188, 0.285, 0.15, and 0.125 respectively for t = 3. Again, as expected,
these probabilities add up to 1.

(e) If you know the probability of each position at time t, how will you find the probabilities at time t +1?
Solutions: The solution to the previous part of the problem suggests a nice algorithm for computing
the probability of each position the man can take at time t +1, provided these probabilities are known
for time t.
Let Xt be the list of all possible positions that the man can be in at time t. From the arguments above,
we know that:

Xt = [−t, −(t−1), . . . , −1, 0, 1, . . . , (t−1), t] .

Let Pt denote a list of probabilities corresponding to the positions Xt . Our goal is to find a way to
calculate Pt+1 (the next probabilities) given Pt (the current probabilities).
The figure above shows Python code for calculating the above next probabilities. The function next_pvec
takes as input the current list of probabilities pvec (at time t), and values for pf, pb, and pc (the for-
ward, backward, and “stay put” probabilities), and it produces as output a list of the next probabilities
(at time t +1).
First of all, observe that the length of the list Xt+1, and hence Pt+1 is two more than the length of Xt

(hence Pt). This is because, at time t + 1 the man can be in two additional possible positions that he
could not have been in at time t.
Also, for each possible position at time t +1, there are at most 3 possible positions the man could have
been in at time t. Therefore, the rules described above for multiplying the relevant probabilities and
adding up these products generalize quite readily.
Thus, given the positional probabilities at time t, the man’s positional probabilities at time t + 1 can
be readily calculated. And the man’s initial position is known to be x(0) = 0. Therefore, starting from
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this initial condition, the positional probabilities can be calculated at any desired future time. Indeed,
the main part of the above program does exactly this; it accepts a future time tf from the user and
prints out a list of probabilities corresponding to every possible position the man can be in at time tf.
Note: Those of you who are familiar with Linear Algebra will readily recognize that the “next prob-
abilities” list is simply a linear combination of the “current probabilities” list, which corresponds to
pre-multiplying the current probabilities list by a (tall and thin) rectangular matrix. Indeed, this idea
can be used to considerably speed-up the probability calculations above.

The Drunk Man has regained some control over his movement, and no longer stays in the same spot; he
only moves forwards or backwards. More formally, let the Drunk Man’s initial position be x(0) = 0. Every
second, he either moves forward one pace or backwards one pace, i.e., his position at time t +1 will be one
of x(t +1) = x(t)+1 or x(t +1) = x(t)−1.

We want to compute the number of paths in which the Drunk Man returns to 0 at time t and it is his first
return, i.e., x(t) = 0 and x(s) 6= 0 for all s where 0 < s < t. Note, we no longer care about probabilities. We
are just counting paths here.

(f) How many paths can the Drunk Man take if he returns to 0 at t = 6 and it is his first return?
Solutions: We use an “F” to represent that the Drunk Man moves forward one pace and a “B” to
represent that the Drunk Man moves backward one pace.
4 possible paths: FFFBBB, FFBFBB, BBBFFF, and BBFBFF. The last two paths can also be obtained

by exchanging F’s and B’s in the first two paths.

(g) How many paths can the Drunk Man take if he returns to 0 at t = 7 and it is his first return?
Solutions: 0 possible path because it needs the same number of forward paces and backward paces.
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(h) How many paths can the Drunk Man take if he returns to 0 at t = 8 and it is his first return?
Solutions: 10 possible paths: FFFFBBBB, FFFBFBBB, FFFBBFBB, FFBFFBBB, FFBFBFBB,
and the other five by exchanging F’s and B’s.

(i) How many paths can the Drunk Man take if he returns to 0 at t = 2n+ 1 for n ∈ N and it is his first
return?
Solutions: 0 possible path because it needs the same number of forward paces and backward paces.

(j) How many paths can the Drunk Man take if he returns to 0 at t = 2n+ 2 for n ∈ N and it is his first
return? (Hint: read http://en.wikipedia.org/wiki/Catalan_number and use any result there if you need.)
Solutions: From Wikipedia, “a Catalan number Cn is the number of monotonic paths along the edges
of a grid with n× n square cells, which do not pass above the diagonal. A monotonic path is one
which starts in the lower left corner, finishes in the upper right corner, and consists entirely of edges
pointing rightwards or upwards.” We can regard an F as an edge pointing rightwards, a B as an edge
pointing upwards, and a possible path as a monotonic path of a grid with (n+ 1)× (n+ 1) square
cells, which does not touch the diagonal. If the first pace is an F, then the (2n+ 2)-th path (the last
pace) must be B; otherwise, the Drunk Man must have returned 0 before t = 2n+2. Therefore, in this
case, we can focus on the second pace to the (2n+1)-th pace, and the number of possible paths is Cn

because it is the number of monotonic paths, which do not pass above the diagonal of n× n square
cells, i.e., do not touch the diagonal of (n+ 1)× (n+ 1) square cells if the first pace is an F and the
last pace is a B. Considering the other case that the first pace is a B and the last pace is an F, the total

number of possible paths is 2Cn =
2

n+1

(
2n
n

)
.

6. An Identity on Integer Partitions
Let n be a positive integer. A partition of n is a way of writing n as a sum of positive integers. Partitions are
considered equivalent under permutation of the summands, so that order of the summands does not matter.
For example, 3 has exactly 3 partitions:

3 = 3

= 2+1

= 1+1+1

We will represent each partition p as a set of pairs (x,r) where the first element x represents a summand and
the second element r is the number of times the summand appears, so that we have n = ∑(x,r)∈p rx for any
partition p of n. We denote by P(n) the set of partitions of integer n. For example:

P(3) = {{(3,1)},{(2,1),(1,1)},{(1,3)}}

In this problem, we will construct a combinatorial proof of the following identity:

∑
p∈P(n)

∏
(x,r)∈p

1
r!xr = 1

For example, for n = 3, the identity is saying:(
1

1!31

)
+

(
1

1!21 ×
1

1!11

)
+

(
1

3!13

)
= 1
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(a) Make sure the above identity works for any n≤ 5.
Solutions:

P(1) = {{(1,1)}}

∑
p∈P(1)

∏
(x,r)∈p

1
r!xr =

(
1

1!11

)
= 1

P(2) = {{(2,1)},{(1,2)}}

∑
p∈P(2)

∏
(x,r)∈p

1
r!xr =

(
1

1!21

)
+

(
1

2!11

)
=

1
2
+

1
2
= 1

P(3) = {{(3,1)},{(2,1),(1,1)},{(1,3)}}

∑
p∈P(3)

∏
(x,r)∈p

1
r!xr =

(
1

1!31

)
+

(
1

1!21 ×
1

1!11

)
+

(
1

3!13

)
=

1
3
+

1
2
+

1
6
=

2+3+1
6

= 1

P(4) = {{(4,1)},{(3,1),(1,1)},{(2,2)},{(2,1),(1,2)},{(1,4)}}

∑
p∈P(4)

∏
(x,r)∈p

1
r!xr =

(
1

1!41

)
+

(
1

1!31 ×
1

1!11

)
+

(
1

2!22

)
+

(
1

1!21 ×
1

2!12

)
+

(
1

4!14

)
=

1
4
+

1
3
+

1
8
+

1
4
+

1
24

=
6+8+3+6+1

24
= 1

P(5) = {{(5,1)},{(4,1),(1,1)},{(3,1),(2,1)},{(3,1),(1,2)},{(2,2),(1,1)},{(2,1),(1,3)},{(1,5)}}

∑
p∈P(5)

∏
(x,r)∈p

1
r!xr =

(
1

1!51

)
+

(
1

1!41 ×
1

1!11

)
+

(
1

1!31 ×
1

1!21

)
+

(
1

1!31 ×
1

2!12

)
+

(
1

2!22 ×
1

1!11

)
+

(
1

1!21 ×
1

3!13

)
+

(
1

5!15

)
=

1
5
+

1
4
+

1
6
+

1
6
+

1
8
+

1
12

+
1

120
=

24+30+20+20+15+10+1
120

= 1

Let σn be the set of permutations over {1,2, . . . ,n}. Let f ∈ σn. We say that (x1 x2 . . . xk) is a cycle of length
k of f if and only if f (x1)= x2, f (x2)= x3, . . . , f (xk)= x1. Note that (x1 x2 . . . xk),(x2 x3 . . . xk x1),(x3 x4 . . . x1 x2),
. . . all represent the same cycle.

A familiar way to represent a permutation f ∈ σn is to explicitly list the mapping (x, f (x)) for all 1≤ x≤ n.
A different way to represent the same permutation is to list all its cycles. Consider Table 1 for an example
of this.
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x 1 2 3 4 5 6 7
f (x) 5 7 4 6 1 3 2

Table 1: A permutation f ∈ σ7. The same permutation can also be represented by 1 cycle of length 3 and 2
cycles of length 2: (4 6 3), (2 7) and (1 5).

(b) Suppose we are working in σn. How many distinct cycles of length l can one construct?
Solutions: Here is a simple procedure to construct a length l cycle. Start by choosing the l elements
which will be part of the cycle, then choose a permutation of these l elements and write down the
ordered list of elements. This is one cycle. We shall however not forget to remove the l multiple
counting of each cycle due to invariance by rotation, as we can essentially shift all the elements by
1≤ i < l places around and obtain a different representation of the same cycle. Hence, the number we
are looking for is: (

n
l

)
× l!× 1

l
=

n!
(n− l)!l

(2)

(c) Let (l1, . . . , lm), (x1, . . . ,xk), (r1, . . . ,rk) be 3 sequences of positive integers such that:
i. ∑

m
i=1 li = n,

ii. ∑
k
j=1 x jr j = n,

iii. For all j ≤ k, there are exactly r j distinct i≤ m such that li = x j.
How many distinct permutations in σn can be represented by a set of m cycles of length l1, . . . , lm?
Express this number only in terms of n and the rs and xs. Be careful not to over count permutations.
Solutions: First, notice than if we are given m cycle lengths l1, . . . , lm such that ∑

m
i=1 li = n, we can

indeed construct a permutation of n elements. Notice also that the xis and ris simply re-express the
cycle lengths by grouping same cycle lengths (xis) together and counting how many times each length
occurs (ris).
Again, let’s give a procedure for constructing a permutation object out of our constraints and count
the implied cardinality. The idea is to construct each cycle separately and reuse our result from the
previous question. Start by constructing cycle 1 of length l1. You have n elements to do so. Then
construct cycle 2 of length l2. Notice that you have only n− l1 elements left to do so. Construct cycle
3 of length l3. You have n− (l1 + l2) left to do so. Keep constructing the cycles until the last one of
length lm with the remaining n−(l1+ l2+ · · ·+ lm−1) elements. This construction implies the following
cardinality:

n!
(n− l1)!l1

× (n− l1)!
(n− l1− l2)!l2

×·· ·× (n− (l1 + · · ·+ lm−1))!
0!lm

We can greatly simplify this experssion by noticing the telescoping terms above and below the fraction
bar. We get:

n!
l1l2 . . . lm

The expression above is a general form for sequence l1l2 . . . lm where sum of the sequence is n. Now
assume we have another sequence, ex: x1x1x1x2x2 where sum of the sequence is n. Then again, we
have:

n!
(n− x1)!x1

× (n− x1)!
(n−2x1)!x1

× (n−2x1)!
(n−3x1)!x1

× (n−3x1)!
(n−3x1− x2)!x2

× (n−3x1− x2)!
(0!)!x2

Or

n!
x3

1x2
2
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Now we can extend it to r1 x1’s, r2 x2’s ... rk xk’s. We can express it in equivalent terms of xis and ri:

n!
xr1

1 . . .xrk
k

This is however not our final answer as we have over-counted all permutations by a (soon to be shown)
constant factor. We have indeed pretended that the ordering of the cycles mattered by constructing
cycles one by one starting from cycle 1 up to cycle m. However, the particular ordering of the cycles is
meaningless, as (4 6 3) (2 7) (1 5) and (2 7) (4 6 3) (1 5) represent the same permutation from Table 1.
We now amend our construction according to this remark. We will enforce permutation distinctness
by spilling out cycles in decreasing order of length size for example. We can do so by first sorting the
lis. While this fixes the problem of distinctness of permutations when all lis are themselves distinct (as
there is only one possible ordering and hence representation of a permutation in this case), it leaves the
problem of the ordering of cycles of same length intact.
Removing these is however easy, as there are exactly ri! ways to permute ri cycles of same size. Thus,
we need to divide everything by r1!× . . .rk! to account for all equivalent representations of the same
permutation object.
Hence, the cardinality we are looking for is:

1
r1! . . .rk!

× n!
xr1

1 . . .xrk
k
= n!

k

∏
j=1

1
r j!x

r j
j

(d) You already know that |σn| = n! by a simple counting argument. Now, use the previous question to
count the elements of σn by using their cycle representation in order to prove the above identity.
Solutions: Decomposing permutations by the lengths of their cycles naturally introduces the integer
partitions. Indeed, among all permutations of length n, we can consider the permutations that have a
single cycle of length n, the permutations that have a single cycle of length n−1 and a cycle of length
1, etc. Using the result of the previous question, we have:

|σn|= ∑
p∈P(n)

n! ∏
(x,r)∈p

1
r!xr

And since |σn|= n!, simplifying by n! gets us the above identity. QED.

7. Fibonacci Fashion

You have n accessories in your wardrobe, and you’d like to plan which ones to wear each day for the next
t days. As a Charm School student, you know it isn’t fashionable to wear the same accessories multiple
days in a row. (Note that the same goes for clothing items in general). Therefore, you’d like to plan which
accessories to wear each day represented by subsets S1,S2, . . . ,St , where S1 ⊆ {1,2, . . . ,n} and for 2≤ i≤ t,
Si ⊆ {1,2, . . . ,n} and Si is disjoint from Si−1.

(a) For t ≥ 1, prove there are Ft+2 binary strings of length t with no consecutive zeros (assume the Fi-
bonacci sequence starts with F0 = 0 and F1 = 1).
Solutions: We will prove this by induction.
Base case: For k = 1, the only binary strings possible are 0 and 1. Therefore, there are two possible
binary strings, and Fk+2 = F3 = 2. For k = 2, the binary strings possible are 11, 01, and 10, and we
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have Fk+2 = F4 = 3, so the identity holds.

Inductive hypothesis: Assume that for k ≥ 1, there are Fk+2 binary strings of length k with no consec-
utive zeros.

Inductive step: Consider the set of binary strings of length k+ 1 with no consecutive zeros. We can
group these into two sets: those which end with 0, and those which end with 1.
For those that end with a 0, these can be constructed by taking the set of binary strings of length k−1
with no consecutive zeros and appending 10 to the end of them. Then by the inductive hypothesis,
this set is of size Fk+1. For those that end with a 1, these can be constructed by taking the set of
binary strings of length k with no consecutive zeros and appending a 1 to the end of them. Then by the
inductive hypothesis, this set is of size Fk+2.
Since the union of these two subsets (those which end with 0 and those which end with 1) cover all
possible elements in the set of binary strings of length k+1 with no consecutive zeros, the size of this
set will be Fk+1 +Fk+2 = Fk+3. This thus proves the inductive hypothesis.

(b) Use a combinatorial proof to prove the following identity, which, for t ≥ 1 and n≥ 0, gives the number
of ways you can create subsets of your n accessories for the next t days such that no accessory is worn
two days in a row:

∑
x1≥0

∑
x2≥0
· · · ∑

xt≥0

(
n
x1

)(
n− x1

x2

)(
n− x2

x3

)
· · ·
(

n− xt−1

xt

)
= Fn

t+2.

Solutions: We first consider the left-hand-side of the identity. To create subsets of accessories that
are consecutively disjoint with sizes xi = |Si|, 1 ≤ i ≤ n, there are

( n
x1

)
ways to create S1, the subset

of accessories you will wear on the first day. Then since S2 must be disjoint from S1, there are
(n−x1

x2

)
ways choose accessories to create S2. Since S3 must be disjoint from S2, there are

(n−x2
x3

)
ways choose

accessories to create S3, and so on. Thus there are
( n

x1

)(n−x1
x2

)
· · ·
(n−xt−1

xt

)
ways to create subsets of

accessories S1, . . . ,St with respective sizes x1, . . . ,xt . Then altogether, S1, . . . ,St can be created in

∑
x1≥0

∑
x2≥0
· · · ∑

xt≥0

(
n
x1

)(
n− x1

x2

)(
n− x2

x3

)
· · ·
(

n− xt−1

xt

)
ways.
Now, consider the right-hand-side of the identity. Now for each accessory i ∈ {1, . . . ,n}, we will first
decide which subsets S1, . . . ,St will contain accessory i, where we can’t assign item i to consecutive
subsets. For each accessory, we create a binary string of length t, where the leading digit represents
S1, the next digit represents S2, and so on. We will say that a 0 in digit k means that we will wear
the accessory on day k. Therefore, the number of ways we can assign accessory i to subsets S1, . . . ,St

such that no two consecutive subsets both have accessory i is the same as the number of binary strings
of length t with no consecutive zeros. Thus using the result in part (a), there are Ft+2 ways to select
the nonconsecutive subsets containing i among S1, . . . ,St . Since we have n accessories, accessories
1, . . . ,n can be placed into subsets S1, . . . ,St in Fn

t+2 ways.
This thus proves the identity.

8. Stirling’s Approximation
In this question, suppose n ∈ Z+, we want to find approximations for n!. For the parts that are marked with
[VL], please complete your answer in the Virtual Lab skeleton. You can also use an online tool (e.g., go to
http://www.wolframalpha.com/ and type “plot lnx”) if you wish to.
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(a) [VL] Plot the function f (x) = lnx.
Solutions:

Figure 1: The plot of lnx.

(b) For the following three questions, please note that lnx is strictly increasing and concave-∩ because,
when x > 0, its first and second derivatives are positive and negative, respectively. Concavity means
that all line segments connecting two points on the function are below the function.
Suppose n ∈ Z+, use the plot to explain why

ln1+ ln2+ . . .+ lnn≥
∫ n

1
lnxdx (3)

Solutions:

Figure 2: The area comparisons.

If n = 1, both sides are equal to 0. If n≥ 2, since lnx is strictly increasing and concave-∩, we can see
from Figure 2 (a) that the area of the left colored region is smaller than the right colored region, i.e.,∫ a+1

a lnxdx < ln(a+1) where a≥ 1, so

ln1+ ln2+ . . .+ lnn = 0+ ln2+ ln3+ . . .+ lnn

>
∫ 2

1
lnxdx+

∫ 3

2
lnxdx+ . . .+

∫ n

n−1
lnxdx

=
∫ n

1
lnxdx.
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(c) Suppose n ∈ Z+, use the plot to explain why

ln1+ ln2+ . . .+ lnn <
∫ n+1

1
lnxdx (4)

Solutions:
Since lnx is strictly increasing and concave, we can see from Figure 2 (b) that the area of the left
colored region is larger than the right colored region, i.e.,

∫ a+1
a lnxdx > lna where a≥ 1, so

ln1+ ln2+ . . .+ lnn <
∫ 2

1
lnxdx+

∫ 3

2
lnxdx+ . . .+

∫ n+1

n
lnxdx

=
∫ n+1

1
lnxdx.

(d) Suppose a ∈ Z+, use the plot to explain why(
lna+ ln(a+1)

2

)
<
∫ a+1

a
lnxdx (5)

Solutions:
Since lnx is strictly increasing and concave, we can see from Figure 2 (c) that the area of the left
colored region is larger than the right colored region, i.e.,

∫ a+1
a lnxdx >

(
lna+ln(a+1)

2

)
where a≥ 1.

(e) Use Equation ((3)) to prove n!≥ e
(n

e

)n.
Solutions:
We have

ln(n!) = ln1+ ln2+ . . .+ lnn

≥
∫ n

1
lnxdx

= (x lnx− x)|n1
= (n lnn−n)− (0−1)

= n lnn−n+1

= ln(nn)− ln(en)+ lne

= ln
(

e
(n

e

)n)
,

so n!≥ e
(n

e

)n.

(f) Use Equation ((4)) to prove n!≤ en
(n

e

)n (Hint: If in this part you find yourself wishing you had n−1!
on the left-hand-side, try to prove an upper bound on n−1! and use that to help you)
Solutions:
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If n = 1, n! = en
(n

e

)n
= 1. If n > 1, we have

ln(n!) = ln1+ ln2+ . . .+ lnn

= (ln1+ ln2+ . . .+ ln(n−1))+ lnn

<
∫ n

1
lnxdx+ lnn

= (x lnx− x)|n1 + lnn

= (n lnn−n)− (0−1)+ lnn

= n lnn−n+1+ lnn

= ln(nn)− ln(en)+ lne+ lnn

= ln
(

en
(n

e

)n)
,

so n! < en
(n

e

)n for n > 1, and the claim n!≤ en
(n

e

)n is proved.

(g) Use Equation ((5)) to prove n!≤ e
√

n
(n

e

)n, which is a tighter upper bound.
Solutions:
If n = 1, n! = e

√
n
(n

e

)n
= 1. If n > 1, we have

ln(n!) = ln1+ ln2+ . . .+ lnn

=
ln1
2

+

(
ln1+ ln2

2

)
+

(
ln2+ ln3

2

)
+ . . .+

(
ln(n−1)+ lnn

2

)
+

lnn
2

< 0+
∫ 2

1
lnxdx+

∫ 3

2
lnxdx+ . . .+

∫ n

n−1
lnxdx+

lnn
2

=
∫ n

1
lnxdx+

lnn
2

= (x lnx− x)|n1 +
lnn
2

= (n lnn−n)− (0−1)+
lnn
2

= n lnn−n+1+
lnn
2

= ln(nn)− ln(en)+ lne+ ln(
√

n)

= ln
(

e
√

n
(n

e

)n)
,

so n! < e
√

n
(n

e

)n for n > 1, and the claim n!≤ e
√

n
(n

e

)n is proved.

(h) [VL] The Stirling’s approximation is usually written as n!≈
√

2πn
(n

e

)n or a simpler version n!≈
(n

e

)n.

Plot the function f (n) =
√

2πn( n
e )

n

n! . What do you observe?
Solutions:
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Figure 3: The plot of the ratio which is f (n) =
√

2πn( n
e )

n

n! .

The plot is shown in Figure 3. The function is closer to 1 as n increases.

(i) Suppose m = k
n , use m,n and apply the simpler version of the Stirling’s approximation to rewrite

(n
k

)
.

Solutions:
We have (

n
k

)
=

n!
(n− k)!k!

≈
(

nn

en

)(
en−k

(n− k)n−k

)(
ek

kk

)
=

nn

(n− k)n−kkk

=

(
n

n− k

)n−k(n
k

)k

=

(
1

1−m

)(1−m)n( 1
m

)mn

.

(j) [VL] Now, suppose m1 =
k1
n = 0.25, m2 =

k2
n = 0.5, and m3 =

k3
n = 0.75, plot ln(

( n
k1

)
), ln(

( n
k2

)
), and

ln(
( n

k3

)
) as functions of n on a plot with linear-scaled axes. What do you observe?

Solutions:
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Figure 4: The plot of approximated ln(
(n

ki

)
) where m1 = 0.25, m2 = 0.5, and m3 = 0.75.

The plot is shown in Figure 4. The functions plotted are nearly linear! The functions with m1 = 0.25
and m3 = 0.75 overlap with each other.

9. Write your own problem
Write your own problem related to this week’s material and solve it. You may still work in groups to
brainstorm problems, but each student should submit a unique problem. What is the problem? How to
formulate it? How to solve it? What is the solution?
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