
EECS 70 Discrete Mathematics and Probability Theory
Fall 2014 Anant Sahai Homework 14
This homework is due December 9, 2014, at 12:00 noon.

1. Section Rollcall!
In your self-grading for this question, give yourself a 10, and write down what you wrote for parts (a) and
(b) below as a comment. Please put the answers in your written homework as well.

(a) What discussion did you attend on Monday last week? If you did not attend section on that day, please
tell us why.

(b) What discussion did you attend on Wednesday last week? If you did not attend section on that day,
please tell us why.

2. Practice Makes Perfect
For this question, do 5 of the online practice problems. For your answer, write down which problems you
did (the problem set title and the number of the question). Use a screen capture to show us that you finished
them.

3. Random Variables and Distributions Lab
In this week’s lab, we will explore common discrete random variables and their corresponding distributions.

For each part, students who want to can choose to completely rewrite the question. Basically, you can come
up with your own formulation of how to do a series of experiments that result in the same discoveries. Then,
write up the results nicely using plots as appropriate to show what you observed. You can also rewrite the
entire lab to take a different path through as long as they convey the key insights aimed at in each part.

Please download the IPython starter code from Piazza or the course webpage, and answer the following
questions.

(a) Plot the PMFs of binomial random variables with N = 20, and with success probabilities p= 0.1,0.3,0.5,0.7,
and 0.9, respectively. You should have 5 different plots in one figure.
What do you observe as the success probability increases?
As the success probability increases, the corresponding plot tends more toward the right, and the mean
value of the corresponding binomial distribution gets closer to the number of trials.
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(b) In probability theory and statistics, the cumulative mass function (CMF) describes the probability that
a real-valued discrete random variable X with a given probability distribution will be found to have a
value less than or equal to x. Mathematically, we define the CMF FX(x) as

FX(x) = P(X ≤ x),

where the right-hand side represents the probability that the random variable X takes on a value less
than or equal to x.
Plot the CMFs of the five binomial random variables from part (a). These should all be increasing
curves. At what value does each CMF plot converge to and stay at 1 (i.e. at what value can you be
almost 100% certain that the number of heads (or successful trials) is less than such value)?
Around 6,12,15,19, and 20, respectively.

(c) Plot the PMF a binomial distribution with parameters (N = 100, p = 0.2) in a bar chart. Then, overlay
your plot with the probability density function (PDF) of a normal distribution with parameters (µ =
20,σ2 = 16). What do you observe?
In a different figure, plot the CMF of the same binomial distribution and overlay it with the cumulative
density function (CDF) of the aforementioned normal distribution. Again, what do you observe?
Finally, derive an approximation between the two distributions using a concept you learned in this
week’s lecture.
The normal curve sits perfectly on top of the binomial distribution in both plots. We have seen this
in Homework 11’s Virtual Lab, but we now fully understand that this happens because of the Central
Limit Theorem (CLT). Let’s derive an approximation between the two distributions.
Let X be a binomial random variable with parameters (N, p). We know that X is the sum of i.i.d.
Bernoulli random variables, which means X = X1 +X2 + . . .+XN , and each Xi ∼ Bern(p). From CLT,
we know that:

X−N p√
N
≈N (0,σ2),

where σ2 = p(1− p), the variance of a Bernoulli random variable. Hence,

Bin(N, p)≈N (N p,Nσ
2) = N (N p,N p(1− p)).

With N = 100 and p = 0.2, we see that Bin(100,0.2)≈N (20,16), which was confirmed by our plots.
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There are other optional parts of this Virtual Lab in the file vl14.pdf, which you can find on Piazza or the
course website.

Reminder: When you finish, don’t forget to convert the notebook to pdf and merge it with your written
homework. Please also zip the ipynb file and submit it as hw14.zip.

4. To Be “Normal”

Suppose a standard 6-sided die (with faces 1 through 6) is rolled n times, and let A be the average of the
results.

(a) How does the Central Limit Theorem help us approximate the distribution of A?
Let Ai be the result of the ith toss. Recall that the mean of a single die roll is

µ = E[Ai] =
1
6
·1+ 1

6
·2+ 1

6
·3+ 1

6
·4+ 1

6
·5+ 1

6
·6 = 3.5,

and the standard deviation of a single die roll is

σ =
√

Var(Ai)

=

√
3.5− 1

6
(1+4+9+16+25+36)

=
√

35/12≈ 1.7078.

Accordingly, the Central Limit Theorem assures us that, for large n, the distribution (A− 3.5)/
√

n
approaches a normal distribution with mean zero and standard deviation

√
35/12 ≈ 1.7078. The

distribution of A itself, therefore, is also in some informal sense approximately normal for large n
(though note that, as n increases, the standard deviation of A approaches 0. 2
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(b) Let A′ be a random variable drawn from the Gaussian distribution best approximating the distribution
of A. If n = 100, what are the bounds of an interval [a,b] centered at 3.5 such that A′ ∈ [a,b] with prob-
ability exactly 90%?. (See https://statistics.laerd.com/statistical-guides/
normal-distribution-calculations.php for normal distribution calculation. You might
want to use Table 1.)

Table 1: Table of the Normal Distribution.
Source: http://cosstatistics.pbworks.com/w/page/27425647/Lesson

The average of n independent die rolls has a mean of

E[A] = E

[
1
n

n

∑
i=1

Ai

]
=

1
n
·n ·E[Ai] = 3.5,

and a standard deviation of

√
Var(A) =

√
Var(

1
n

n

∑
i=1

Ai) =

√(
1
n

)2

·nVar(Ai) =

√
1
n
· 35

12
≈ 0.17078.
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So A′ should be drawn from the normal distribution with mean 3.5 and standard deviation 0.17078.
We want the interval [a,b] centered around E[A′] = 3.5 that

P(a≤ A′ ≤ b)≈ 0.9.

By symmetry, we know 10% of the probability falls outside of [a,b], with 5% below a and 5% above
b. Thus, P(a≥ A′) = P(A′ ≥ b)≈ 1−0.9

2 = 0.05. We want

P(A′ ≤ b)≈ 1−P(A′ ≥ b) = 0.95.

According to the standard normal distribution table,

P
(
A′ ≤ b

)
= P

(
A′−E[A′]√

Var(A′)
≤ b−E[A′]√

Var(A′)

)
≈ 0.95

when
b−E[A′]√

Var(A′)
≈ 1.65. Therefore,

b−E[A′]√
Var(A′)

≈ 1.65

b−3.5
0.17078

= 1.65

b = 1.65 ·0.17078+3.5

b = 3.781787,

and

a = 3.5− (b−3.5) = 3.5− (3.781787−3.5) = 3.218213.

Hence, the interval is [3.22,3.78]. 2

(c) Approximate the probability that 3≤ A′ ≤ 4, if n = 30.
When n = 30, E[A′] is still 3.5, whereas the standard deviation is√

Var(A′) =

√
1
n

Var(Ai) =

√
1
30
· 35

12
≈ 0.3118.

We want to know

P
(
A′ ≤ 4

)
= P

(
A′−E[A′]√

Var(A′)
≤ 4−E[A′]√

Var(A′)

)
= P

(
A′−E[A′]√

Var(A′)
≤ 4−3.5

0.3118

)
≈ P

(
A′−E[A′]√

Var(A′)
≤ 1.60

)
.

Looking up z = 1.60 from the standard normal distribution table, we find

P(A′ ≤ 4)≈ 0.9452.

By symmetry,

P(A′ ≤ 3) = P(A′ ≥ 4)≈ 1−0.9452 = 0.0548.

and thus

P(3≤ A′ ≤ 4) = P(A′ ≤ 4)−P(A′ ≤ 3) = 0.9452−0.0548 = 0.8904.

2
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(d) What is the minimum n for which, with probability at least 99%, we have 3≤ A′ ≤ 4?
E[A′] is 3.5 regardless of n. The standard deviation is

√
Var(A′) =

√
1
n

Var(Ai) =

√
35

12n
.

We want

P(A′ ≤ 4) = P

(
A′−E[A′]√

Var(A′)
≤ 4−E[A′]√

Var(A′)

)
≈ 0.99.

Again, because of symmetry, we look for a z value that gives 99+ 1
2 = 99.5% probability. z ≈ 2.58

according to the standard normal distribution table. Now we have,

z =
4−E[A′]√

Var(A′)
= 2.58

4−3.5√
35
12n

= 2.58

√
12n
35

= 5.16

n =
5.162 ·35

12
= 77.658.

Therefore, n must be at least 78. 2

Using Hoeffding’s Inequality: We can also find a proper upper bound with Hoeffding’s inequality,

P(A′ ≥ 4) = P(A′ ≥ 3.5+0.5)≤ exp
(
−n · 2(0.52)

(6−1)2

)
≤ 0.005

−0.02n≤ ln0.005

n≥ − ln0.005
0.02

= 264.916.

Hoeffding’s inequality says that an n of anything greater than 265 is certainly safe. 2

5. Hypothesis testing
We would like to test the hypothesis claiming that a coin is fair, i.e. P(H) = P(T ) = 0.5. To do this, we
flip the coin n = 100 times. Let Y be the number of heads in n = 100 flips of the coin. We decide to reject
the hypothesis if we observe that the number of heads is less than 50− c or larger than 50+ c. However,
we would like to avoid rejecting the hypothesis if it is true; we want to keep the probability of doing so less
than 0.05. Please determine c. (Hints: use the central limit theorem to estimate the probability of rejecting
the hypothesis given it is actually true.)

You might need to use Table 1.

Let Xi be the random variable denoting the result of the i-th flip:

Xi =

{
1 if the i-th flip is head,
0 if the i-th flip is tail.

EECS 70, Fall 2014, Homework 14 6



Then we have Y = ∑
n
i=1 Xi. If the hypothesis is true, then µ = E[Xi] =

1
2 and σ2 = Var(Xi) =

1
2 ·

1
2 = 1

4 . By
central limit theorem, we know that

P
(

Y −nµ√
nσ2

≤ z
)
≈Φ(z)

P

Y −100 · 1
2√

100 · 1
4

≤ z

≈Φ(z)

P
(

Y −50
5
≤ z
)
≈Φ(z)

where
Φ(z) =

∫ z

−∞

1√
2π

e−x2/2dx.

We will reject the hypothesis when |Y − 50| > c. We also want P(|Y − 50| > c) < 0.05, or equivalently
P(|Y −50| ≤ c)> 0.95. We have

P(|Y −50| ≤ c) = P
(
|Y −50|

5
≤ c

5

)
≈ 2Φ(

c
5
)−1.

Let 2Φ( c
5)− 1 = 0.95, so Φ( c

5) = 0.975 or c
5 = 1.96. That is c = 9.8 flips. So we see that if we observe

more that 50+10 = 60 or less than 50−10 = 40 heads, we can reject the hypothesis.

This question does not require people using CLT. An alternative solution is by Hoeffding’s inequality:
We want P(|Y −50|> c)≤ 0.05. We know that

P(|Y −50|> c) = P(
|Y −50|

100
>

c
100

)≤ 2e
−100· 2(

c
100 )2

(1−0)2 .

Let 2e
−100· 2(

c
100 )2

(1−0)2 ≤ 0.05, we get c≥ 13.58. So c = 14 satisfies our criteria.

6. Simplified Self-Grading (carried over from HW13; only parts (d)-(h) need to be done)
There are about n = 500 self-graded question parts in this iteration of EECS 70. For this simplified version
of self-grading, we use a scale from 0 to 4 instead of the 0,2,5,8,10 scale currently being used. On each of
them, a student assigns a grade Si. For each homework, readers randomly grade a subset of the problems.
Assume that n/5 of the question parts are graded by the readers (chosen uniformly over all the problem
parts) and the readers assign grades Ri. Assume that Ri may deviate from an honest self-grade Si according
to the conditional probabilities given in Table 2.

aaaaa
Ri Si 0 1 2 3 4

0 3/4 1/4 0 0 0
1 1/4 1/2 1/4 0 0
2 0 1/4 1/2 1/4 0
3 0 0 1/4 1/2 1/4
4 0 0 0 1/4 3/4

Table 2: P(Ri|Si).

We do the following check: we add up all of the Si−Ri for a particular student (for the subset of problems
graded by readers only). If the result is too high, we suspect that a student might be inflating their grades.

EECS 70, Fall 2014, Homework 14 7



(a) Suppose that a student is honest. Let p0 = P(Si = 0) and p4 = P(Si = 4). Let Xi = Si−Ri. Express the
distribution of Xi as a function of p0 and p4.
Refer to HW13’s solution

(b) Give the best upper-bounds you can on both E[Xi] and Var(Xi). Your bounds shall not depend on p0 or
p4.
Refer to HW13’s solution

(c) Using Chebyshev’s inequality and the above parts, compute the smallest threshold T that we should
choose so that ∑i Xi ≤ T for 95% of honest students?
Refer to HW13’s solution

(d) Repeat the above using the Central Limit Theorem to get an approximate answer for T . (You might
want to refer to Table 1 for the cumulative normal distribution table.)

P

(
100

∑
i=1

Xi ≤ T

)
= P

(
∑

100
i=1 Xi−100E[X1]√

100Var(X1)
≤ T −100E[X1]√

100Var(X1)

)
(1)

≥ P

(
∑

100
i=1 Xi−100E[X1]√

100Var(X1)
≤ T −25√

50

)
(2)

≥ P

(
∑

100
i=1 Xi−100E[X1]√

100Var(X1)
≤ T −25

7.07

)
(3)

We can apply the CLT approximation as the Xi are i.i.d and of bounded variance. By the CLT, we have
that the lower bound is approximately equal to

1√
2π

∫ T−25
7.07

−∞

e−
x2
2 dx

We can use the cumulative distribution table of the normal distribution to see that
T−25
7.07 = 1.65 will get us 95% probability. Solving back for T , we get

T ≈ 36.7

which is much lower than the conservative Chebyshev bound from question c).

(e) For simplicity, we are going to focus our attention on a hypothetical student who never truly deserves
full points and never truly deserves a zero on any question part, i.e., they never give themselves a zero
or full points on a question. Recompute better upper bounds on both E[Xi] and Var(Xi) that are valid
for this student. Recalculate the relevant theshold T using the Central Limit Theorem.
The student’s distribution is such that p0 = p4 = 0. For this student, we have:

E[Xi] = 0

and
Var(Xi) =

1
2

As for the previous question, the relevant threshold is given by T such that:

1
2π

∫ T√
50

−∞

e−
x2
2 dx = 0.95
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So
T ≈ 1.65

√
50≈ 11.7

is the new threshold.

(f) Assume this student is inflating their true self-grades Si by adding 1 point to a question part with
probability 1/2. What is their risk of being caught (i.e., above the threshold T )? (Here, explain how
you are modeling things to be true to the spirit of this problem.)
If the student does not cheat, then the Xi are his corresponding score discrepancies with the grader(s).
Now, if the student cheats as in the process described above, we can model this by introducing a collec-
tion of independent Bernoulli random variables Ii with parameter 1/2. Now, the scores discrepancies
are modeled by Xi + Ii. Basically, the Si retain their “inherent score” (ground truth) signification while
we add on top of that a cheating choice to inflate by 1 point the reported score. We have:

E[Xi + Ii] = E[Xi]+E[Ii] = 0+
1
2
=

1
2

Var(Xi + Ii) = Var(Xi)+Var(Ii) =
1
2
+

1
4
=

3
4

Let’s approximate the probability of being caught by using the CLT again.

P

(
100

∑
i=1

Xi + Ii ≥ T

)
= P

(
∑

100
i=1 Xi + Ii−100E[X1 + I1]√

100Var(X1 + I1)
≥ T −100E[X1 + I1]√

100Var(X1 + I1)

)
(4)

= P

∑
100
i=1 Xi + Ii−100E[X1 + I1]√

100Var(X1 + I1)
≥

T −100 1
2√

100 3
4

 (5)

≈ P

(
∑

100
i=1 Xi + Ii−100E[X1 + I1]√

100Var(X1 + I1)
≥−4.43

)
(6)

By the CLT, the risk of being caught is about at least

1√
2π

∫
∞

−4.43
e−

x2
2 dx≈ 99.997%

(g) If this student is willing to accept a 50% chance of being caught cheating, by how much can they
systematically inflate their grade( i.e. inflates his/her grade to every question by some constant number
of points)? Assume that they can inflate by no more than 3 points per question part. (Because inflating
a 0 to a 4 would get them slammed the first time they did it.) We will assume that 5,6 and 7 are allowed
as self-reported grades to keep things simple.
We use the same modeling idea as in the previous question. We are hence looking at Xi+x where x≤ 3
is some constant number of points the systematic cheater inflates his/her grade by. We have

E[Xi + x] = x

Var(Xi + x) =
1
2
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P

(
100

∑
i=1

Xi + x≥ T

)
= P

(
∑

100
i=1 Xi + x−100E[X1 + x]√

100Var(X1 + x)
≥ T −100E[X1 + x]√

100Var(X1 + x)

)
(7)

= P

∑
100
i=1 Xi + x−100E[X1 + x]√

100Var(X1 + x)
≥ T −100x√

100 1
2

 (8)

= P

(
∑

100
i=1 Xi + x−100E[X1 + x]√

100Var(X1 + x)
≥ 11.7−100x√

50

)
(9)

By the CLT, the risk of being caught is about at most 50% when x is such that

1√
2π

∫
∞

11.7−100x
8.3

e−
x2
2 dx≤ 50%

which happens when 11.7−100x
8.3 ≥ 0, that is x≤ 0.12 points.

(h) Is it worth trying to cheat on self-grading, even for a grade-maximizing sociopath1 student with no
internal sense of morality or “decent respect to the opinions of mankind.” ?
Systematically cheating at 50% detection rate will give you an increase of at most 500× 0.12 = 60
points on your homework grade. In proportion, this only represents 60/(4 ∗ 500) = 3% of your total
homework grade. Taking into account the fact that your homework grade is only 15% of your total
grade for this course, we are talking about 0.15× 0.03 = 0.45% of total points you could get by
cheating. With a probability one half of getting caught. That doesn’t seem reasonably worth it.

7. Tolerating Errors
Assume Alice is trying to send m packets across a noisy channel to her friend Bob. The channel indepen-
dently has probability p of generating an error on each packet. To account for errors, Alice sends n > m
packets. If Alice wants to ensure that Bob can correctly decode her entire message of m packets with
probability at least r, how big can m be?

(a) Modeling each error as a coin toss with probability p, what is the probability that Bob cannot correctly
decode Alice’s message?
Denoting X as the number of errors in the n packets, each with probability p of generating an error.
Then X ∼ Binom(n, p) with E[X ] = np and Var(X) = np(1− p). Since we are dealing with general
errors, we want

P(no decoding) = P(X >
n−m

2
) =

n

∑
k=b n−m

2 +1c

(
n
k

)
pk(1− p)n−k.

1This sociopathic model of a selfish maximizer is referred to as a “rational agent” in the formal language of economics. Showing
that cheating is not substantially attractive in the context of a mechanism even for a sociopath is one way to show that the mechanism
is probably safe against normal humans too — since actual human beings are caring, loving, altruistic, and have senses of integrity
and honor.
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(b) Assume n = 100, r = 0.9, and p = 0.1. What is the safe bound for m using the Chebyshev bound?
The Chebyshev bound is,

P(X >
n−m

2
) = P(X−np >

n−m
2
−np)

≤ P(|X−np|> n−m
2
−np)

≤ np(1− p)(n−m
2 −np

)2 < 0.1

⇒ 10np(1− p)<
(

n−m
2
−np

)2

⇒
√

10np(1− p)<
n−m

2
−np

⇒ m < n−2np−2
√

10np(1− p)≈ 61packets.

(c) Using the same information as part (b), approximate the safe m using the Central Limit Theorem.
For CLT,

P(X >
n−m

2
)≈ Q

(
n−m

2 −np√
np(1− p)

)
≤ 0.1.

The corresponding m value can also be found by setting z∗ = 1.28 =
n−m

2 −np√
np(1−p)

from a standard Normal

distribution table, giving us m = n−2np−2 ·1.28
√

np(1− p) = 72 packets.

(d) Using the same information as part (b), what is the safe bound for m using the relevant Chernoff bound
for Binomial RV’s?
For the Chernoff bound, we know from lecture notes that for unfair coin tosses, X1,X2, . . . ,Xn,

P

(
1
n

n

∑
i=1

Xi ≥ a

)
≤ e−nD(a||p)

where D(a||p) = aln a
p +(1−a)ln 1−a

1−p . For our case, we need a = n−m
2n and

P(X >
n−m

2
) = P

(
X
n
≥ n−m

2n

)
≤ e−nD( n−m

2n ||p) < 0.1.

Alternatively, assuming the deviation is small, we can use the form in lecture notes derived by the
Taylor expansion.

P
(

X
n
≥ p+ ε

)
≤ exp

(
−n

ε2

2p(1− p)

)
where ε = n−m

2n − p for this problem.

For each of these bounds and approximations, we plot the corresponding functions vs m and see where
the plots cross (1− r) = 0.1, assuming n−m

2 > np. The plot should match the numbers calculated from
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the bounds and CLT. From the figure below, we see that indeed m can be up to 61 packets using the
Chebyshev inequality, 67 packets using the Chernoff bound for binomial RV’s, 68 packets using the
Taylor expansion form of the Chernoff bound, and 72 packets using CLT.

8. Wrecking Ball
A new startup Milton/Alighieri Games has decided to create a family of games to cater to a previously
underserved segment of the video game market. In their quest for a crossover hit, they score a marketing
coup by getting the exclusive video game rights to use Miley Cyrus’s megahit song, “Lucifer’s Lament”
which RCA Records had been promoting solely under its alternate title to avoid drawing controversy2. This
family of game titles are all set in the mythical “War/Rebellion in Heaven” and include real time strategy
games (like Starcraft), a Multiplayer Online Battle Arena game (like League of Legends), and an online
Collectible Card Game (like Magic: The Gathering or Hearthstone).

You’re in charge of one of the main characters, and are proposing a particular attack that you’ve entitled
“Wrecking Ball” to tie in with the song. In this attack, at every turn, one of two things happens: With
probability 2

3 , the attack succeeds and the character’s health levels double (raising your max if necessary),
with that many health points being drained from the opponent. With probability 1

3 , the attack backfires and
the character’s health gets reduced by a factor of 8, with the lost health being transfered to the opponent.
Different turns are independent in whether the attack succeeds or backfires.

This problem is about understanding what happens if this attack is used repeatedly.

Let X0 be the initial real-valued health of the character. So the health at the end of turn n is Xn = X0 ∏
n
i=1 Ai

where Ai is the random factor that results from the attack in turn i.

(a) Calculate the expected value of Ai.
Note that Ai is 1

8 with probability 1/3, and 2 with probability 2/3. Hence,

E[Ai] = (1/3)(
1
8
)+(2/3)∗2 =

1
24

+
32
24

=
33
24

2Miley had grown increasingly annoyed since many people weren’t appreciating the emotional nuances of her performance
without seeing the mythic allusions resonating with it.
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(b) Calculate the expected value of Xn. You can assume that X0 = x0 — a given constant.
We will use the fact that the Ai are independent and identically distributed to compute the expected
value of Xn.

E[Xn] = E[X0

n

∏
i=1

Ai]

= x0E[
n

∏
i=1

Ai]

= x0

n

∏
i=1

E[Ai]

= x0E[Ai]
n

= x0

(
33
24

)n

(c) Seeing the previous calculations, the reasonably pious management gets very concerned about your
proposed attack and worry that perhaps it is tilting the game in favor of this character.
Explain to them whether they are right or wrong to be worried by explaining to them what the typical
range for Xn should be (with probability at least 90%) when n is large.
(Hint: figure out how to invoke the laws of large numbers.)
They are wrong, at least about the proposed attack being overpowered. First, think about the most
likely sequences of Ai’s. Since Ai is 1

8 with probability 1/3 and 2 with probability 2/3, if we have a
sequence of n Ai’s we might expect about 1/3 of them to be 1

8 and 2/3 of them to be 2. That should
be bad for the character, since this would cause a net decrease in health. We will use laws of large
numbers to formally justify that we are likely to get about 1/3 of the Ai’s to be 1

8 and about 2/3 of them
to be 2, and hence with high probability we have an exponential decrease in health.
We define the indicator random variables Yi to indicate the event that Ai =

1
8 .

Yi =

{
1 if Ai =

1
8

0 if Ai = 2

Note that since the Ai are independent, the Yi are iid Ber(1/3). We can use laws of large numbers to
bound ∑Yi. We will show how to get bounds with Chebyshevs and CLT; either one of these methods

is fine. First, let’s calculate the variance of
n
∑

i=1
Yi

Var(
n

∑
i=1

Yi) =
n

∑
i=1

Var(Yi) =
1
3
· 2

3
·n =

2n
9

By Chebyshev’s:

Pr(|
n

∑
i=1

Yi−
1
3

n| ≥ nε)≤ 2n
9ε2n2 =

2
9nε2

We want to show that the probability that
n
∑

i=1
Yi is within nε of its mean is at least 0.9. Equivalently, we

want to show that the probability that it is farther than nε from its mean is at most 0.1. Hence we set
the RHS equal to 0.1.
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2
9nε2 = 0.1√

20
9n

= ε

Therefore, with probability at least 0.9, we have between 1
3 − ε and 1

3 + ε fraction of the Ai’s are 1
8 .

Note that the more that turn out to be 1
8 , the smaller the product of them all is. Hence, we get that(

1
8

)( 1
3+ε)n

2(
2
3−ε)n ≤

n

∏
i=1

Ai ≤
(

1
8

)( 1
3−ε)n

2(
2
3+ε)n

(
1
8

) 1
3 n+
√

20n
9

2
2
3 n−
√

20n
9 ≤

n

∏
i=1

Ai ≤
(

1
8

) 1
3 n−
√

20n
9

2
2
3 n+
√

20n
9

2−3
(

1
3 n+
√

20n
9

)
2

2
3 n−
√

20n
9 ≤

n

∏
i=1

Ai ≤ 2−3
(

1
3 n−
√

20n
9

)
2

2
3 n+
√

20n
9

2−
1
3 n−4
√

20n
9 ≤

n

∏
i=1

Ai ≤ 2−
1
3 n+4
√

20n
9

x02−
1
3 n−4
√

20n
9 ≤ Xn ≤ x02−

1
3 n+4
√

20n
9

So Xn is decaying exponentially.
A Notable Alternative Solution: This method focuses on the exponents of the multipliers. Note that
we can say Ai = 2Bi where

Bi =

{
−3 if Ai =

1
8

1 if Ai = 2

Then we can use Chebyshev’s to bound the probability that
n
∑

i=1
Bi deviates from −1

3 n, which is its mean.

It turns out that this method actually gives the same answer for both the Chebyshev and CLT methods.
We will briefly walk through this method with the Bi’s for Chebyshev’s. Note that it is also valid with
CLT, and can be easily checked against the CLT solution we have written here, since they use the same
method, just a different random variable, and a fixed value of n will result in the same bound.

E[
n

∑
i=1

Bi] = n∗ (−3(
1
3
)+1(

2
3
)) =−1

3
n

Var(
n

∑
i=1

Bi) = n∗Var(Bi) = n(9(
1
3
)+1(

2
3
)−
(
−1

3

)2

) = n(3+
2
3
− 1

9
) =

32
9

n

Then Chebyshev’s gives us that

Pr(|
n

∑
i=1

Bi− (−1
3

n)| ≥ nε)≤ 32
9nε2
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Hence, we get

0.1 =
32

9nε2

ε
2 =

320
9n

ε =

√
320
9n

Exponentiating all the terms preserves the inequality, since 2x is a monotonic function.

2−
1
3 n−nε ≤

n

∏
i=1

Ai ≤ 2−
1
3 n+nε

2−
1
3 n−
√

320n
9 ≤

n

∏
i=1

Ai ≤ 2−
1
3 n+
√

320n
9

Multiplying by x0:
x02−

1
3 n−
√

320n
9 ≤ Xn ≤ x02−

1
3 n+
√

320n
9

Just to verify that we have the same bound as with the other method, substitute
√

320n
9 = 4

√
20n
9 :

x02−
1
3 n−4
√

20n
9 ≤ Xn ≤ x02−

1
3 n+4
√

20n
9

By CLT:

We want to estimate Pr(|
n
∑

i=1
Yi− 1

3 n| ≤ nε) = Pr((1
3 − ε)n≤

n
∑

i=1
Yi ≤ (1

3 + ε)n), in order to get a bound

on the number of attacks we need for
n
∑

i=1
Yi to be close to the mean with high probability. Remember

from your virtual labs that the sum of the independent Bernoulli random variables Yi is approaching a
normal (Gaussian) distribution, which is why we can apply CLT.
We will approach this problem in the standard way that we approach CLT problems: manipulate the
random variable in question to have expectation 0 and variance 1, then find the values of n for which
the area under the normal curve that you are interested in attains the probability that you want. This
will be clearer when we start the manipulations:

Pr((
1
3
− ε)n≤

n

∑
i=1

Yi ≤ (
1
3
+ ε)n)

=Pr(−nε ≤
n

∑
i=1

Yi−
1
3

n≤ nε)

=Pr

 −nε√
2
9 n
≤

n
∑

i=1
Yi− 1

3 n√
2
9 n

≤ nε√
2
9 n


By the CLT,

n
∑

i=1
Yi− 1

3 n
√

2
9 n
→ N(0,1). Hence, we get that

Pr

 −nε√
2
9 n
≤

n
∑

i=1
Yi− 1

3 n√
2
9 n

≤ nε√
2
9 n

≈
3√
2

√
nε∫

− 3√
2

√
nε

1√
2π

e−x2/2dx
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We want Pr(|
n
∑

i=1
Yi− 1

3 n| ≤ nε)≥ 0.9, so we set:

3√
2

√
nε∫

− 3√
2

√
nε

1√
2π

e−x2/2dx = 0.9

Since the probability that we are 2 standard deviations away from the mean of a normal distribution is
roughly 95%, and we would expect that we want 3√

2

√
nε to be a little under 2. Using a look-up table,

we realize that we want to set 3√
2

√
nε ≈ 1.645 to get the probability of being in this region to be 90%.

3√
2

√
nε ≈ 1.645

ε ≈ 1.645
√

2
3
√

n

Therefore, we get that: (
1
8

)( 1
3+ε)n

2(
2
3−ε)n ≤

n

∏
i=1

Ai ≤
(

1
8

)( 1
3−ε)n

2(
2
3+ε)n

2−3n( 1
3+ε)2n( 2

3−ε) ≤
n

∏
i=1

Ai ≤ 2−3n( 1
3−ε)2n( 2

3+ε)

2−3n( 1
3+

1.645
√

2
3
√

n )2n( 2
3−

1.645
√

2
3
√

n ) ≤
n

∏
i=1

Ai ≤ 2−3n( 1
3−

1.645
√

2
3
√

n )2n( 2
3+

1.645
√

2
3
√

n )

2−
1
3 n− 4(1.645)

√
2n

3 ≤
n

∏
i=1

Ai ≤ 2−
1
3 n+ 4(1.645)

√
2n

3

x02−
1
3 n− 4(1.645)

√
2n

3 ≤ Xn ≤ x02−
1
3 n+ 4(1.645)

√
2n

3

So as n grows large, Xn is decaying exponentially.
A notable incorrect solution arises if you try to use Chebyshev’s directly on Xn. Why might this be?
Well, one of the problems is that the variance of the random variable Xn is growing exponentially with
n. In particular, it is a faster growing exponential than the expected value of Xn, or even the square of
the expected value of Xn. Hence, the only way to get a useful bound on the probability (i.e. not upper
bounding with 1) from Chebyshev’s is to choose ε to be larger than the expected value of Xn. Then the
region whose probability you are bounding must include 0, as well as extremely large values that grow
exponentially with n. This makes the bound effectively useless. It should intuitively make sense why
this method is doomed to fail: in this case, the expected value of Xn is not a value of Xn that we get
with high probability. Hence, trying to justify how Xn is very likely close to its mean is futile, because
it is simply not. This type of solution should get at most half credit.

9. A Chernoff Bound

In this problem, you will show that the probability that the average of specific 3-valued independent random
variables is “far away” from its expectation decays exponentially in the number of random variables in the
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sum. You have already seen how to do this for independent Bernoulli random variables via the Chernoff
bound in the notes; now, we will explore how to do this for the following independent 3-valued random
variables. Let Xi be a sequence of independent identically distributed random variables such that:

X1 =


2 with prob. 1/3
1 with prob. 1/3
0 with prob. 1/3

Let X =
n
∑

i=1
Xi.

a) Argue why P(X ≥ na) = P(esX ≥ ensa) for all values s ≥ 0. Our goal is to come up with an upper
bound for this quantity that decays exponentially with n. Argue why we should only concern ourselves
with 1 < a < 2 (Is a≤ 1 interesting for this bound?).
We realize that X ≥ na ⇐⇒ sX ≥ nsa, for s ≥ 0. Hence P(X ≥ na) = P(sX ≥ nsa). Furthermore,
since ex is a monotonic increasing function, we have that sX ≥ nsa ⇐⇒ esX ≥ ensa. Hence P(X ≥
na) = P(sX ≥ nsa) = P(esX ≥ ensa).
We only care about a > 1 because if a≤ 1, since 1 is the mean Xi, then P(X ≥ a) will get fairly large.
This is because we know from our virtual labs and the WLLN that 1

n X will tend to cluster about the
mean of Xi, which is 1, as n increases. So if a ≤ 1, the probability in question is not actually small.
Furthermore, if a > 2, since Xi can take value at most 2 we get P(X ≥ na) = 0. If a = 2, then we

get P(X ≥ 2n) = P(X = 2n) =
n
∏
i=1

P(Xi = 2) = (1
3)

n, so we already know that the probability is either

decaying exponentially or 0 for a≥ 2.

b) Argue why P(X ≤ na) = P(esX ≥ ensa) for all values s ≤ 0. Argue why we should only concern
ourselves with 0≤ a < 1.
Very similar to the last part. X ≤ na ⇐⇒ sX ≥ nsa for s ≤ 0, and sX ≥ nsa ⇐⇒ esX ≥ nsa since
ex is monotonic increasing. Hence, we get P(X ≤ na) = P(esX ≥ ensa). Similar to the last part, since
the mean of Xi is 1, if we had a ≥ 1 then P(X ≤ na) would be large as we know from the WLLN
that 1

n X would tend to cluster around 1. Hence we should concern ourselves with a < 1. Furthermore,
since the Xi are nonnegative, if a < 0 we get P(X ≤ na) = 0. All the Xi have to be 0 in order to have
X = na if a = 0, so if a = 0 we get P(X ≤ na) =

(1
3

)n. Therefore, we know the probability is either 0
or exponentially decreasing if a≤ 0.

c) Since it was the right hand side of both the above equalities, let’s focus on bounding P(esX ≥ ensa).
Show that P(esX ≥ ensa)≤ e−n(sa−lnM(s)), where M(s) = E[esXi ].

Apply Markov’s inequality. This directly gives P(esX ≥ ensa)≤ E[esX ]
ensa . We have from the previous part

that P(esX ≥ ensa) ≤ E[esX ]
ensa . It seems we already have part of the expression – the main concern is to

turn E[esX ] into something in terms of E[esXi]. We can write:

E[esX ] = E[e
s

n
∑

i=1
Xi
]

= E[
n

∏
i=1

esXi]
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By noting that the Xi are independent, we know that the esXi are independent. Hence:

=
n

∏
i=1

E[esXi]

= E[esXi]n

= M(s)n

Now we substitute this into our bound: P(esX ≥ ensa)≤ E[esX ]
ensa = M(s)n

ensa = e−nsaen lnM(s) = e−n(sa−lnM(s)).

d) Compute M(s) = E[esXi ].
Using the definition of expectation, we get that

M(s) = E[esXi ] = (
1
3
)es∗0 +(

1
3

es∗1)+(
1
3

es∗2)

=
1
3
+

1
3

es +
1
3

e2s

.

e) Now we have the tools to continue part a) and start to bound P(X ≥ na). Use the parts above to

conclude that P(X ≥ na) = P(esX ≥ ensa)≤ e
−nmax

s≥0
(sa−lnM(s))

.
We know that P(X ≥ na) = P(esX ≥ ensa) ≤ e−n(sa−lnM(s)) for all s ≥ 0. Since this holds for s ≥ 0,
it also holds for the s ≥ 0 that maximizes the function sa− lnM(s). Hence, we get P(X ≥ na) ≤
e
−nmax

s≥0
(sa−lnM(s))

f) Plug s = 0 into sa− lnM(s). Given this value, what can you conclude about the maximum value of
sa− lnM(s) for s≥ 0?
When we plug s = 0 into sa− lnM(s), we get

0(a)− lnM(0) = 0− ln(1/3+1/3+1/3) = 0.

Hence, the maximum value of sa− lnM(s) over s≥ 0 must be nonnegative.

g) Give the value of s that maximizes sa− lnM(s) for s ≥ 0. Show that this is a positive value for s
given that 1 < a < 2. What does the fact that this is a positive value for s tell you about the value of
sa− lnM(s) when maximized over s≥ 0? Potentially Useful Hint: If you want to show that (x+y)/z>
1, you can start by determining whether x, y and z are nonnegative or negative. Once you know this,
you can manipulate the inequality (x+ y)/z > 1 to get an equivalent inequality that you can verify
more easily. Also, if α and β are positive, then α > β ⇐⇒ α2 > β 2.
We will take the derivative of sa− lnM(s) with respect to s, set that to 0 and solve for s. This will give
the value of s that maximizes this expression. Then we use the fact that 1 < a < 2 to demonstrate that
this maximum value of s is greater than 0, which means that sa− lnM(s)> 0 for this value of s, by the
previous part.

d
ds

(sa− lnM(s)) = 0

a− 1
(1/3)(1+ es + e2s)

(1/3)(es +2e2s) = 0

a(1+ es + e2s) = es +2e2s

(2−a)e2s +(1−a)es−a = 0
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We apply the quadratic equation to solve for es:

es =
−(1−a)±

√
(1−a)2 +4(2−a)(a)
2(2−a)

Applying 1 < a < 2, we see that −(1−a)> 0,
√

(1−a)2 +4(2−a)(a) is real and greater than 0, and

2(2−a)> 0. Since
√

(1−a)2 +4(2−a)(a)> 0, choosing es =
−(1−a)+

√
(1−a)2+4(2−a)(a)
2(2−a) is the larger

solution, and hence is our best candidate for a solution having s > 0. So we will focus on this choice of
es. Our goal is now to show that es > 1, since es > 1 ⇐⇒ s > 0, due to the fact that ex is a monotonic
increasing function.

In accordance with the hint, we want to show that es = x+y
z > 1, where x = −(1− a) > 0, y =√

(1−a)2 +4(2−a)(a) > 0, and z = 2(2− a) > 0. Now that we have this information, we can ma-
nipulate this inequality to come up with an equivalent inequality that is easier to prove:

x+ y
z

> 1

x+ y > z

y > z− x

Note here that if x > z then this inequality is trivially true, hence we are done. Otherwise, z− x ≥ 0
and we continue:

y2 > (z− x)2

Now we substitute back in for x,y and z:

(1−a)2 +4(2−a)a > (4−2a+1−a)2

1−2a+a2 +8a−4a2 > (5−3a)2

1+6a−3a2 > 25−30a+9a2

−12a2 +36a−24 > 0 (10)

We notice that at a = 1 and a = 2 the LHS is 0. Since the LHS is concave down, we know it has a
single local maximum and no local minimums, so its value on a ∈ [1,2] will be minimized at either
a = 1 or a = 2. In order to verify that its value on on (1,2) satisfies this inequality, we take derivatives
with respect to a at a = 1 and a = 2. We just need to make sure that the LHS is non-zero when
1 < a < 2. This is apparent by the shape of the parabola, and also follows from the definition of being
a concave function, namely that any line segment between two points on the graph lies below the
graph, as illustrated below.
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Hence we know that −12a2 + 36a− 24 > 0 for 1 < a < 2, and since the manipulations to the in-
equality were reversible we conclude that the maximizing value of es > 1 for 1 < a < 2. Therefore

s = ln −(1−a)+
√

(1−a)2+4(2−a)(a)
2(2−a) > 0 for 1 < a < 2.

Alternative way to verify that −12a2 +36a−24 > 0 :
We can simplify Inequality (10) a little further.

−12a2 +36a−24 > 0

a2−3a+2 < 0

(a−2)(a−1)< 0

Since 1 < a < 2, (a−2) must be negative and (a−1) must be positive, hence their product is less than
zero as we wanted.

What does this mean? It means that the unique maximum value of sa− lnM(s) for s ≥ 0 occurs at a
nonzero value of s. Since sa− lnM(s) = 0 when s = 0, and the maximum value occurs elsewhere, the
maximum value must be strictly greater than 0. Therefore, we can conclude that the maximum value
of sa− lnM(s) for s≥ 0 is positive.

h) Give an upper bound that decays exponentially with increasing n for P(X ≥ na), using your previous
parts to justify it.
Plugging in the answer from above, we get

P(X ≥ na)≤ e
−nmax

s≥0
(sa−lnM(s))

= e
−n(a ln −(1−a)+

√
(1−a)2+4(2−a)(a)
2(2−a) −ln(( 1

3 )(1+
−(1−a)+

√
(1−a)2+4(2−a)(a)
2(2−a) +

(
−(1−a)+

√
(1−a)2+4(2−a)(a)
2(2−a)

)2

)))

We know that this is an exponentially decaying bound, since we used a value of s that makes sa−
lnM(s)> 0, which we justified in the previous parts.

i) (Optional) Now complete the exponential upper bound for b). In part b), s≤ 0 and we want to bound
P(X ≤ na). With this in mind, repeat similar arguments to those in the previous parts to come up with
a bound that decays exponentially with n for P(X ≤ na), where a < 1.
This is very similar to the previous parts. The important part for people who did this optional part is
to note the differences from the previous parts. We still end up with the same Chernoff bound, but
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the maximization is now over s ≤ 0 rather than s ≥ 0. Furthermore, we have 0 < a < 1 rather than
1 < a < 2. These are both restrictions that you justified in part b). Note that the RHS of the inequality
in b) is the same as the RHS in a), so we can reuse a lot of the work. Everything is the same until we
get to the step where we have to justify that our choice of s that maximizes sa− lnM(s).

After taking the derivative to maximize sa−lnM(s), we get the same expression, namely es =
−(1−a)±

√
(1−a)2+4(2−a)a

2(2−a) .

We choose the ’+’ solution since es should be a positive number. So we start with es =
−(1−a)+

√
(1−a)2+4(2−a)a

2(2−a) ,
and want to apply 0 < a < 1 to show that es < 1, and therefore that s < 0. We employ the same method
as before, manipulating the inequality we want to prove until it becomes something we can prove more
easily.

−1(1−a)+
√
(1−a)2 +4(2−a)a

2(2−a)
< 1

Since a < 1, we have that 2(2−a)> 0. Multiply both sides by it.

−(1−a)+
√
(1−a)2 +4(2−a)a < 2(2−a)√
(1−a)2 +4(2−a)a < 5−3a

Since a < 1, we know that both sides are positive. Square both sides.

(1−a)2 +4(2−a)a < (5−3a)2

1−2a+a2 +8a−4a2 < 9a2−30a+25

1+6a−3a2 < 9a2−30a+25

0 < 12a2−36a+24

Now we have a much easier expression to analyze. Note that the RHS is convex (concave up), and
hence any line segment between two points lies above the graph. We note that the graph has its local
minimum at a = 1.5, and since it is concave up this means that it is strictly decreasing on the interval
(0,1). Therefore, since its value at 1 is 0, its value on (0,1) must be strictly positive. Plot:

j) (Virtual Lab, Optional) For a= 1.5, do an appropriate simulation using a computer and plot the actual
probability of having this sort of large deviation happen as compared to what your bounds above say.
Use the appropriate kind of axes to judge the quality of the bound.

EECS 70, Fall 2014, Homework 14 21



Once you fill in the appropriate function for M(s) as well as the value for s that maximizes sa− lnM(s)
that you have computed for previous parts, you should get plots similar to the following:

The plot with linear axes is heartening, as it shows that Chernoff is indeed an exponential upper bound
for the simulated probability. The quality of the bound, however, is best gauged by the plot with the
log-scaled y-axis. Note that the slopes of the Chernoff bound and the simulated probability are quite
similar – the Chernoff bound is decreasing slightly less than the simulated probability. However, the
similarity of these slopes indicates that the exponential decay in the Chernoff bound is quite close to
the exponential decay in the real probability. Hence, we can conclude that the Chernoff bound, while
not decaying exactly like the real probability, is fairly good.

10. (Optional) Binomial CLT
In this question we will explicitly see why the central limit theorem holds for the binomial distribution as
the number of coin tosses grows.

Let X be the random variable showing the total number of heads in n independent coin tosses.

(a) Compute the mean and variance of X . Show that µ = E[X ] = n/2 and σ2 = Var[X ] = n/4.
We can write X as a sum: X = Y1 + · · ·+Yn where each Yi is a Bernoulli random variable; i.e. Yi = 1
when the i-th coin toss is heads and 0 if it is tails. Then from linearity of expectation we have

E[X ] = E[Y1]+ · · ·+E[Yn] = nE[Y1] = n/2
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where we used the fact that all Yi have the same expectation which is 1/2.
To compute the variance, note that because Y1, . . . ,Yn are independent, we can decompose the variance
into a sum of variances. Therefore we have the following:

Var[X ] = Var[Y1]+ · · ·+Var[Yn]

Now in order to compute Var[Yi], note that by definition Var[Yi] = E[(Yi− E[Yi])
2]. We know that

E[Yi] = 1/2, so Var[Yi] = E[(Yi−1/2)2]. But note that Yi takes the values 0 and 1, therefore (Yi−1/2)2

always takes the value 1/4. So its expectation is also 1/4. This means that

Var[X ] = 1/4+ · · ·+1/4 = n/4

(b) Prove that Pr[X = k] =
(n

k

)
/2n.

The number of configurations of heads/tails for the coins that result in k coins being heads is
(n

k

)
, since

there are this many ways to pick the positions of the heads. Each configuration of heads/tails is equally
likely and they each have probability 1/2n, because the coins are independent and the probability of
each coin being in a specific state is 1/2. So the total probability for the event X = k is

(n
k

)
/2n.

(c) Show by using Stirling’s formula that Pr[X = k]' 1√
2π
( n

2k )
k( n

2(n−k))
n−k
√

n
k(n−k) .

In general we expect 2k and 2(n−k) to be close to n for the probability to be non-negligible. When this
happens we expect

√
n

k(n−k) to be close to
√

n
(n/2)×(n/2) = 2/

√
n. So replace that part of the formula

by 2/
√

n.
We need Stirling’s formula to approximate the

(n
k

)
part. Remember that

(n
k

)
= n!

k!(n−k)! , and Stirling’s

approximation says that m!'
√

2πm(m/e)m. Therefore we have(
n
k

)
=

n!
k!(n− k)!

'
√

2πn(n/e)n
√

2πk(k/e)k
√

2π(n− k)((n− k)/e)n−k

We can break the (n/e)n part into (n/e)k(n/e)n−k and then combine these with the denominator. By
doing this the part (n/e)k

(k/e)k becomes (n/k)k and the part (n/e)n−k

((n−k)/e)n−k becomes (n/(n− k))n−k.

As for the parts under the square root, one of the
√

2π’s in the denominator cancels the one in the
numerator and therefore only one remains in the denominator. We also get

√
n√

k
√

n−k
=
√

n
k(n−k) .

Therefore we have (
n
k

)
' 1√

2π
(n/k)k(n/(n− k))n−k

√
n

k(n− k)

Now we need to divide both sides by 2n to get to Pr[X = k]. We can write 2n = 2k2n−k and merge each
term into the corresponding power. We get(

n
k

)
/2n ' 1√

2π
(n/2k)k(n/2(n− k))n−k

√
n

k(n− k)

which is what we wanted to prove.
If we replace the

√
n

k(n−k) part with 2/
√

n we get(
n
k

)
/2n ' 1√

2π
(n/2k)k(n/2(n− k))n−k 2√

n
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(d) In order to normalize X , we need to subtract the mean, and divide by the standard deviation. Let
Y = (X −µ)/σ be the normalized version of X . Note that Y is a discrete random variable. Determine
the set of values that Y can take. What is the distance d between two consecutive values?
The set of values that X can take is {0, . . . ,n}. Therefore the set of values that Y can take is (i−
n/2)/(

√
n/2) = (2i− n)/

√
n for i = 0, . . . ,n. Originally (for X) the distance between consecutive

values is 1, but since we are dividing by σ =
√

n/2, this distance becomes 1/(σ) = 2/
√

n. Note that
subtracting the mean has no effect on the distance between consecutive points.

(e) Let X = k correspond to the event Y = t. Then X ∈ [k−0.5,k+0.5] corresponds to Y ∈ [t−d/2, t +
d/2]. For conceptual simplicity, it is reasonable to assume that the mass at point t is distributed
uniformly on the interval [t−d/2, t+d/2]. We can capture this with the idea of a “probability density”
and say that the probability density on this interval is just Pr[Y = t]/d = Pr[X = k]/d.

Compute k as a function of t. Then substitute that for k in the approximation you have from part (c) to
find an approximation for Pr[Y = t]/d. Show that the end result is equivalent to

1√
2π

(
(1+

t√
n
)

1+ t√
n (1− t√

n
)

1− t√
n

)−n/2

We know how to compute t as a function of k. We simply do what we do to X to get to Y , i.e. subtract
the mean of X and divide by its standard deviation. Therefore t = (k−n/2)/(2/

√
n) = 2k−n√

n . Now to
reverse this process and go from t to k we need to do the reverse, i.e. first multiply by σ and then add
the mean of X . Therefore k =

√
nt/2+n/2 =

√
nt+n
2 .

Now note that n/(2k)= n/(
√

nt+n)= ((
√

nt+n)/n)−1 =(1+ t√
n)
−1. Similarly we have n/2(n−k)=

n/(2n−n−
√

nt) = ((n−
√

nt)/n)−1 = (1− t√
n)
−1.

Now we can write (n/2k)k as (1+ t√
n)
−k and (n/2(n− k))n−k as (1− t√

n)
−(n−k). To get rid of k even

in the exponent we need to write it in terms of t. We have −k = −(
√

nt + n)/2 = −(n/2)(1+ t√
n).

Similarly we have −(n− k) =−(n−n/2−
√

nt/2) =−(n/2)(1− t√
n).

Now it’s time to assemble the pieces. Remember that we had

Pr[X = k] = Pr[Y = t]' 1√
2π

(n/2k)k(n/2(n− k))n−k 2√
n

Replacing the parts (n/2k)k and (n/2(n− k))n−k the way we described gives us

Pr[Y = t]' 1√
2π

(1+
t√
n
)
−(n/2)(1+ t√

n )(1− t√
n
)
−(n/2)(1− t√

n )
2√
n

We need to approximate Pr[Y = t]/d, and note that d = 2/
√

n which is exactly the last term appearing
in our approximation of Pr[Y = t]. So by dividing by d, that term simply cancels out and we get

Pr[Y = t]/d ' 1√
2π

(
(1+

t√
n
)

1+ t√
n (1− t√

n
)

1− t√
n

)−n/2

(f) As you can see, we have expressions of the form (1+ x)1+x in our approximation. To simplify them,
write (1+ x)1+x as exp(ln(1+ x)(1+ x)) and then replace ln(1+ x)(1+ x) by its Taylor series.
The Taylor series up to the x2 term is ln(1+ x)(1+ x) ' x+ x2/2+ . . . (feel free to verify this by
hand). Use this to simplify the approximation from the last part. In the end you should get the familiar
formula that appears inside the CLT:

1√
2π

e−t2/2
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(The CLT is essentially taking a sum with lots of tiny slices and approximating it by an integral of this
function. Because the slices are tiny, dropping all the higher-order terms in the Taylor expansion is
justified.)
The term (1+x)1+x as suggested can be written as exp(ln(1+x)(1+x)) and then (1+x) ln(1+x) can
be replaced by its Taylor series up to the first few terms, i.e. by x+ x2/2. Now if we also do this for
−x, we get (1− x)1−x = exp(ln(1− x)(1− x)) ' exp(−x+ x2/2). By multiplying our approximation
for x and −x we get

(1+ x)1+x(1− x)1−x ' exp(x+ x2/2)exp(−x+ x2/2) = exp(x2)

Now if we let x = t√
n we get an approximation for the term inside parenthesis from last part. We get

(1+
t√
n
)

1+ t√
n (1− t√

n
)

1− t√
n ' exp((t/

√
n)2) = et2/n

Therefore we have

Pr[Y = t]/d ' 1√
2π

(et2/n)−n/2 =
1√
2π

e−t2/2

which is the formula for the probability density function of the standard normal random variable.

11. Write your own problem

Write your own problem related to this week’s material and solve it. You may still work in groups to
brainstorm problems, but each student should submit a unique problem. What is the problem? How to
formulate it? How to solve it? What is the solution?
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