
EECS 70 Discrete Mathematics and Probability Theory
Fall 2014 Anant Sahai Homework 3
This homework is due September 22, 2014, at 12:00 noon.

1. Propose-and-Reject Lab
In this week’s Virtual Lab, we will simulate the traditional propose-and-reject algorithm. You will find a
simple implementation of a Person class, where each Person has an identification number, is either male
or female, and has his or her own preference list, in the code skeleton for this question.

Please download the IPython starter code from Piazza or the course webpage, and answer the following
questions.

(a) Using the example from Note 4, page 6, which is shown again below for your convenience, create one
list which contains all the men, and one which contains all the women. Each man or woman needs to
be created using the Person class.

Men Women
1 A B C D
2 A D C B
3 A C B D
4 A B C D

Women Men
A 1 3 2 4
B 4 3 2 1
C 2 3 1 4
D 3 4 2 1

(b) For this question, we’ve given you the code to run the traditional propose-and-reject algorithm where
the men propose to the women. Your task is to create a new version by changing it to women making
proposals. Are the final pairings for the two cases the same?
Solutions: They are not in this case.

(c) This question will focus on exploring what happens when we randomize preferences. In the code
skeleton, you will find an implementation of the function create_random_lists, which creates
a random set of preferences.
We’re interested in how often the men-propose and women-propose algorithms return the same pair-
ings. Write a function that generates a random set of preferences for men and women, then runs each
variant of the traditional propose-and-reject algorithm on that set of preferences. For lists of 4 people,
how often do the men-propose and women-propose algorithms agree on the final stable pairings?
Solutions: The value of same_final_pairing(n,k) is usually around 2n

k for sufficiently high
values of n and k. Intuitively, this makes sense. Why? n is like our sample size - since each set
of preferences is independent from the last. As we increase n, the value should increase linearly.
Furthermore, we’d expect higher values of k to decrease the frequency of both pairings being the same,
since there are more possible pairings and thus it’s less likely for the female-optimal and male-optimal
pairings to be the same.

(d) Finally, we’re going to explore how long the women-propose algorithm takes as a function of n. In
lecture, we learn that the algorithm must terminate after at most n2 days (we will soon prove a stricter
bound in a later question). Write a function that returns how many days it takes for the traditional
propose-and-reject algorithm to arrive at its stable solution using randomly-generated preference lists.
Try it on some inputs of different size. How quickly does the number of days grow with the input?
Does it grow linearly (at the same rate as n - maybe twice as fast or half as fast), quadratically, loga-

EECS 70, Fall 2014, Homework 3 1



rithmically? If you can’t tell, try graphing some outputs by hand. You do not have to submit any graph,
but it certainly would help defend your claim.
Solutions: The value appears to grow approximately linearly. The most important thing to note here
is that the upper bound of n2 is virtually never even approached. Usually, even for large n, the highest
value seen is less than 3n. Distinguishing between linear and loglinear (nlog(n)) is very difficult to do
empirically, especially for small n like we have here, so both answers are acceptable.

Reminder: When you finish, don’t forget to convert the notebook to pdf and merge it with your written
homework. Please also zip the ipynb file and submit it as hw3.zip.

2. Candy Problem
There are N students standing in a circle, facing the center. Each student is initially issued an even number
of candies. Being the fair and honest students that they are, they come up with the following adjustment
algorithm. First, each student gives half of his or her candies to the student on his or her left. Note that after
this step, some students might have an odd number of candies. Next, those students with an odd number of
candies will get one more candy from the teacher. The students repeat the adjustment algorithm and stop
when everyone has the same number of candies.

(a) Run the algorithm for the case where there are 6 students and the initial number of candies, in clockwise
order, is: {2, 4, 4, 2, 6, 8}.
Solutions: Initial configuration: {2,4,4,2,6,8}
After iteration 1: {6,4,4,4,4,8}
After iteration 2: {8,6,4,4,4,6}
After iteration 3: {8,8,6,4,4,6}
After iteration 4: {8,8,8,6,4,6}
After iteration 5: {8,8,8,8,6,6}
After iteration 6: {8,8,8,8,8,6}
After iteration 7: {8,8,8,8,8,8}

(b) By the Well-Ordering Principle, before we begin the adjustment algorithm, there is a minimum number
of candies possessed by any student and a maximum number of candies possessed by any student.
Since these quantities are even, we let 2n denote the minimum number of candies and let 2m denote
the maximum number of candies in the initial candy distribution. Prove that the number of candies
possessed by each student is still between 2n and 2m after one iteration of the adjustment algorithm.
Solutions: Let s be any student, and let 2k be the number of candies that s has. Let t be the student
to the right of s, and let 2r be the number of candies that t has. We know that at the beginning of
the algorithm, n ≤ k,r ≤ m. After the first step of the adjustment algorithm, student s will have k+ r
candies. In the second step of the adjustment algorithm, there are two cases:

EECS 70, Fall 2014, Homework 3 2



• If k+ r is even, then s is not given an additional candy, so s will have k+ r candies after the first
iteration. Since n≤ k,r ≤ m, we know that 2n≤ k+ r ≤ 2m.

• If k+ r is odd, then s will be given an additional candy, and so s will have k+ r+1 candies after
the first iteration. Since k+ r is odd, we can’t have that both k = m and r = m, since in this case
k+ r = 2m would be even. Thus we must have that at least one of k,r is strictly less than m, so
2n≤ k+ r < 2m, and therefore 2n≤ k+ r+1≤ 2m.

Since the number of candies that s has is still between 2n and 2m for both cases, and we could have
picked any of the students as s, the result holds.

(c) Now, suppose the minimum number of candies that any student has immediately after iteration i is 2k,
and that p students have exactly 2k candies. Prove that, provided the algorithm doesn’t terminate im-
mediately after iteration i, less than p students will have exactly 2k candies immediately after iteration
i+1.
Solutions: To prove this, we will prove that the two claims hold: (1) Students with more than 2k
candies still have more than 2k candies after one iteration, and (2) At least 1 out of the p students will
have a larger number of candies after one iteration.

(1) Assume student s has 2` candies where ` > k. On his or her right, there is a student with 2r candies
where r ≥ k. After one iteration, student s has `+ r candies. Since `+ r > k+ r ≥ 2k, student s
still has more than 2k candies after one iteration.

(2) First, we will prove that at least 1 of the p students has someone with more than 2k candies on his
or her right.
Proof by contradiction: Assume no student with 2k candies has someone with more than 2k
candies on his or her right. Then all the students have 2k candies, which means the algorithm
would have terminated. Contradiction!
From the proof above, we can assume that student s with 2k candies has someone with 2r candies
on his or her right where r > k. After one iteration, student s has k+ r candies. As k+ r > k+k =
2k, s now has more than 2k candies. Therefore, at least 1 out of p students will have a larger
number of candies after one iteration.

From (1), p cannot increase, since the students who have more than 2k candies will still have more
than 2k candies after one iteration. From (2), at least one student who had 2k candies will have more
than 2k candies after one iteration. Therefore, p must decrease by at least 1.

(d) Does the adjustment algorithm always terminate in a finite number of iterations, or could students be
trading candies with each other forever? Explain your reasoning.
Solutions: The algorithm will terminate in a finite number of steps. The intuition is that we have
proved in (b) that the maximum number of candies is bounded and we have proved in (c) that the
minimum number of candies will increase, so the minimum number of candies will approach the
maximum number of candies until the final iteration where these quantities are the same.
Assume that the maximum number of candies is 2m and the minimum number of candies is 2n where
n and m are some integers and n ≤ m in the initial configuration. If n = m, the statement holds since
everyone starts with the same number of candies and the algorithm terminates after 1 step. Now,
consider the case that n < m:
Let p be number of students with the minimum number of candies in the initial configuration. From
(c), at least 1 student with the minimum number of candies will have more candies after running one
iteration. Therefore, all the students with the minimum number of candies in the initial configuration
have more than 2n candies after at most p iterations. Repeating the algorithm, the minimum number
of candies must increase within a finite number of iterations, while by (b), the maximum number of

EECS 70, Fall 2014, Homework 3 3



candies cannot increase. So the minimum number of candies must be equal to the maximum number
of candies in a finite number of steps.

3. Indifferent Attitudes
In the real world, it is perhaps a bit unrealistic to expect that each man and woman can provide a strict
preference ordering of all his or her potential mates. To reflect this, let’s suppose we allow each person’s
preference list to contain ties. Mathematically, a set W of k women forms a tie of length k in the preference
list of man m if m does not prefer wi to w j for any wi,w j ∈W (i.e., m is indifferent between wi and w j), while
for any other woman w not in W , either m prefers w to all women in W or m prefers all the women in W to
w. A tie on a woman’s list is defined analogously. We will call this the Stable Marriage Problem with Ties.

Recall that in the original Stable Marriage Problem, where preference lists are strictly ordered, it is always
possible to find a stable matching, where a matching is stable if there is no man x and woman y such that
x and y both prefer each other over their current partners. However, for the Stable Marriage Problem with
Ties, 3 different types of stability are possible:

• Weak stability. A matching is weakly stable if there is no couple x and y, each of whom strictly
prefers the other to their current partner in the matching.

• Strong stability. A matching is strongly stable if there is no couple x and y such that x strictly prefers
y to his or her partner, and y either strictly prefers x to his or her partner or is indifferent between them.

• Super-stability. A matching is super-stable if there is no couple x and y, each of whom either strictly
prefers the other to his/her partner or is indifferent between them.

It is then natural to ask whether these different types of stable matchings always exist in a given instance of
the Stable Marriage Problem with Ties. Answer the following.

(a) For the Stable Marriage Problem with Ties, does a weakly stable matching always exist? Either prove
the statement or provide a counterexample.
Solutions: It is easy to see that a weakly stable matching always exists. We will take our instance
of the Stable Marriage Problem with Ties and reduce it to an instance of the usual Stable Marriage
Problem with strict preferences. To do this, we will break ties arbitrarily. For instance, we could
simply say that partners that are tied are actually preferred based on a combination of alphabetical
order — so Alice is preferred to Betty if they are tied — and age: so if a woman has tied preferences
for Aaron’s, she’ll prefer the older one. How we break ties doesn’t matter at all. This is just one way
that tie-breaking could happen.
Then if we run the usual propose-and-reject algorithm on our constructed instance with strict pref-
erences, the stable matching produced by the algorithm is a weakly stable matching for our original
instance of the Stable Marriage Problem with Ties. In fact, any matching that is stable in the con-
structed instance (preference lists with ties broken) is weakly stable in the original instance (with ties).
We will prove this by contradiction.
Let M be any instance of the stable marriage problem with ties. Break ties in the preference lists in M
arbitrarily to create an instance of the stable marriage problem (with strict preference orders), M′.
Assume that there exists some matching L, where L is a stable matching for M′ but L is not a weakly
stable matching for M. Since L is not a weakly stable matching for M, then by the definition of weak
stability, there exist couples (m,w′),(m′,w)∈ L such that in the preference lists in M, m strictly prefers
w to his current match w′ and w strictly prefers man mto her current match m′. But then (m,w) would
also forms a rogue pair in L for instance M′. But this contradicts our assumption that L is a stable
matching for M′. Thus our assumption must be false.

EECS 70, Fall 2014, Homework 3 4



(b) For the Stable Marriage Problem with Ties, does a strongly stable matching always exist? Either prove
the statement or provide a counterexample.
Solutions: It is not always possible to find a strongly stable matching. Here is one possible coun-
terexample:

Man Preference List
1 A > B
2 A = B

Woman Preference List
A 2 > 1
B 2 > 1

Since both women A and B prefer man 2, and man 2 is indifferent to both women A and B, both possible
matchings {(1,A),(2,B)} and {(1,B),(2,A)} are not strongly stable.

(c) For the Stable Marriage Problem with Ties, does a super-stable matching always exist? Either prove
the statement or provide a counterexample.
Solutions: It is not always possible to find a super-stable matching. An easy counter example is one
where everyone is indifferent to all their potential partners. You could have also reused your solution
to part (b) above, since if an instance is not strongly stable, it is also not super stable.

(d) Assume we are given an instance of the Stable Marriage Problem with Ties, along with a weakly stable
matching M for that instance. Upon getting married to their partners assigned in M, each person’s
preferences change slightly and the married partner becomes preferred over anyone they were tied
with, but doesn’t change in rank otherwise. Is M now super-stable?
Solutions: Yes. M is now super-stable.
Let P be our original instance of the Stable Marriage Problem with Ties, and let M be a weakly stable
matching for P. Let P′ be the modified instance of the Stable Marriage Problem with Ties (i.e., where
the married partner in M becomes preferred over anyone they were tied with in P). Assume that M
is a weakly stable matching for P but M is not a super-stable matching for P′. Then there must exist
married couples (m,w′),(m′,w) ∈M such that in P′, one of the following hold:

• m strictly prefers w to w′ and w is indifferent between m and m′

This is impossible, since by construction of P′, even if w was indifferent between m and m′ in P,
she strictly prefers m′ over m in P′.

• m strictly prefers w to w′ and w strictly prefers m to m′

This is impossible, since otherwise M would not be a weakly stable matching for P.
• w strictly prefers m to m′ and m is indifferent between w and w′

This is impossible, since by construction of P′, even if m was indifferent between w and w′ in P,
he strictly prefers w′ over w in P′.

• w strictly prefers m to m′ and m strictly prefers w to w′

This is impossible, since otherwise M would not be a weakly stable matching for P.
• m is indifferent between w and w′ and w is indifferent between m and m′

This is impossible, again by construction of P′.

Since all cases are impossible, we’ve reached a contradiction, and conclude that M must be a super-
stable matching for P′.

4. Karl and Emma fight!

(a) Karl and Emma are having a disagreement regarding the traditional propose-and-reject algorithm.
They both agree that it favors men over women. But they disagree about what, if anything, can be
done without changing the ritual form of men proposing, women rejecting, and people getting married
when there are no more rejections.

EECS 70, Fall 2014, Homework 3 5



Karl mansplains: “It’s hopeless. Men are obviously going to propose in the order of their preferences.
It’s male optimal so why would they do anything else? As far as the women are concerned, given that
they face a specific choice of proposals at any given time, they are obviously going to select the suitor
they like the most. So unless we smash the system entirely, it is going to keep all women down.”
Emma says: “People are more perceptive and forward-looking that you think. Women talk to each
other and know each other’s preferences regarding men. They can also figure out the preferences of
the men they might be interested in. A smart and confident woman should be able to do better for
herself in the long run by not trying to cling to the best man she can get at the moment. By rejecting
more strategically, she can simultaneously help out both herself and her friends.”
Is Emma ever right? If it is impossible, prove it. If it is possible, construct and analyze an example
(a complete set of people and their preference lists) in which a particular woman acting on her own
(by not following the ordering of her preference list when deciding whether to accept or reject among
multiple proposals) can get a better match for herself without hurting any other woman. Show how she
can do so. The resulting pairing should also be stable.
Solutions: Emma is right. Here is an example of six people, three men (1,2,3) and three women
(A,B,C), together with their respective preference lists.

Man Preference List
1 A >C > B
2 A > B >C
3 C > A > B

Woman Preference List
A 3 > 1 > 2
B 2 > 3 > 1
C 1 > 2 > 3

We know what happens when we run the traditional propose-and-reject algorithm with these preference
lists. We get the pairing {(1,A),(2,B),(3,C)}. But here, we can see that both A and C can do better.
Now, woman A looks at the preference lists of all the men and women and notices something. If she
doesn’t cling to the best she can get at the moment, she can end up with someone better! Further, she
can do so without hurting B and C. Let’s see how this plays out.
On day 1 of the traditional algorithm, we have the following proposals. The only change here is that A
now rejects 1 instead of 2 even though she likes 1 more among them.

Day 1

A 1, 2
B
C 3

Now, we continue from as normal, using the traditional propose-and-reject algorithm. Here are the
remaining days.

Day 1 2 3 4

A 1, 2 2 2, 3 3
B 2
C 3 1 , 3 1 1

The pairing produced from the run above is {(3,A),(2,B),(1,C)}. We see that woman A acting on her
own on day one changed the face of the game for the women.
Is this pairing stable? Well, of course it is! Each woman ends up with the man she likes the most.
In conclusion, we can say with conviction that Emma was indeed right! A forward-thinking woman
can potentially improve the ostensibly bleak outcome of the traditional propose-and-reject algorithm
by strategically rejecting in the early stages.

EECS 70, Fall 2014, Homework 3 6



(b) Karl and Emma have another disagreement! Karl claims that if a central authority was running the
propose-and-reject algorithm then cheating the system might improve the cheater’s chances of getting
the more desirable candidate. The cheater need not care about what happens to the others.
Karl says: “Lets say there exists a true preference list. A prefers 1 to 2 but both are low on her
preference list. By switching the reported preference order among 1 and 2, she can end up with 3
whom she prefers over 1 and 2 which wasn’t possible if she did not lie. Isn’t that cool?”
Emma responds: “That’s impossible! In the traditional propose-and-reject algorithm switching the
preference order 1 and 2 cannot improve A’s chance to end up with 3.”
Either prove that Emma is right or give an example of set of preference list for which a switch would
improve A’s husband (that is, she gets matched with 3), and hence proving Karl is right.
Solutions: Assume we have three men 1, 2 and 3 and three women A, B, and C with preferences as
given in the table below. Row A shows true preferences of A, while in row A′ she pretends she prefers
2 over 1.

Man Preference List
1 A >C > B
2 A > B >C
3 C > A > B

Woman Preference List
A 3 > 1 > 2
A′ 3 > 2 > 1
B 1 > 3 > 2
C 1 > 3 > 2

First let us consider one possible execution of the traditional propose-and-reject algorithm with true
preference list of A. Then we get the following pairing: (1,A), (2,B) and (3,C).

Woman Day 1 Day 2

A 1 , 2 1
B 2
C 3 3

If the same algorithm is run with the false preference list A′ we get (1,C), (2,B) and (3,A).

Woman Day 1 Day 2 Day 3 Day 4
A 1, 2 2 2, 3 3
B 2
C 3 3, 1 1 1

This way A got the man she wanted most (3) and also helped C get man 1, who is highest on C’s
preference list without actually intending to help.

5. TeleBears
In the Course Enrollment Problem, we are given n students and m discussion sections. Each discussion
section u has some number, qu of seats, and we assume that the total number of students is larger than the
total number of seats (i.e. ∑

m
u=1 qu < n). Each student ranks the m discussion sections in order of preference,

and the instructor for each discussion ranks the n students. Our goal is to find an assignment of students to
seats (one student per seat) that is stable in the following sense:

• There is no student-section pair (s,u) such that s prefers u to her allocated discussion section and the
instructor for u prefers s to one of the students assigned to u. (This is like the stability criterion for
Stable Marriage: it says there is no student-section pair that would like to change the assignment.)

EECS 70, Fall 2014, Homework 3 7



• There is no discussion section u for which the instructor prefers some unassigned student s to one of
the students assigned to u. (This extends the stability criterion to take account of the fact that some
students are not assigned to discussions.)

Note that this problem is almost the same as the Stable Marriage Problem, with two differences: (i) there
are more students than seats; and (ii) each discussion section generally has more than one seat.

(a) Explain how to modify the propose-and-reject algorithm so that it finds a stable assignment of students
to seats.
Solutions: We will extend the propose-and-reject algorithm given in the lecture notes. Students will
play the role of men and discussion section instructors will play the role of women. Instead of keeping
a single person as in the original algorithm, each discussion section instructor will keep a waitlist of
size equal to its quota.
Note that there are other valid ways to modify the propose-and-reject algorithm such that a stable
assignment is produced. One way is to have the instructors playing the role of men and the students
playing the role of women, with the difference that now we have men proposing to up to qu women
each day. It is also possible to “expand” each instructor by the size of his or her quota by making qu

copies of instructor u and adding empty discussions for the unassigned students.
The extended procedure for students proposing and instructors keeping a waitlist works as follows:

• All students apply to their first-choice discussion section.
• Each discussion section u with a quota of qu, then places on its waitlist the qu applicants who rank

highest (or all the applicants if there are fewer than qu of them) and rejects all the rest.
• Rejected applicants then apply to their second-choice discussion section, and again each discus-

sion section instructor u selects the top qu students from among the new applicants AND those on
its waitlist; it puts the selected students on its new waitlist, and rejects the rest of its applicants
(including those who were previously on its waitlist but now are not).

• The above procedure is repeated until every applicant is either on a waitlist or has been rejected
from every discussion section. At this point, each discussion section admits everyone on its wait-
list.

(b) State a version of the Improvement Lemma (see Lecture Note 4) that applies to your algorithm, and
prove that it holds.
Solutions:

Improvement Lemma Assume that discussion sections maintain their waitlist in decreasing order
of their preference for the students on the lists. Let ⊕ be the “null” element, which we will use as a
placeholder in waitlist positions not yet assigned to a student. For any discussion section u, let qu be
its quota and let sk

i ∈ {Students}∪{⊕} be the student in the i’th position on the waitlist after the k’th
round of the algorithm. (If there are fewer than qu students on the list, we fill the bottom of the list
with ⊕’s.) Then for all i and k, the discussion section instructor likes sk+1

i at least as much as sk
i . (Here

we assume that the discussion section instructor prefers any student to no student.)

In short, the lemma says that no position in the list ever gets worse for the discussion section instructor
as the algorithm proceeds. As in the Lecture Notes, we use the Well-Ordering Principle and prove the
lemma by contradiction:
Suppose that the jth day, where j > k, is the first counterexample where, for index i ≤ qu, discussion
section u, has either nobody or some student ŝ inferior to ŝk

i . Then on day j−1, the instructor has some

EECS 70, Fall 2014, Homework 3 8



student s̃ on a string that they like at least as much as sk
i . Following the algorithm, s̃ still “proposes” to

the instructor of section u on day j since they said “maybe” the previous day. Therefore, the instructor
has the choice of at least one student on the jth day, and his or her best option is at least as good as
s̃, so the instructor would have chosen s̃ over ŝ. Therefore on day j, the instructor does have a student
that they like at least as much as sk

i in waitlist position i≤ qu. This contradicts our initial assumption.

(c) Use your Improvement Lemma to give a proof that your algorithm terminates, that every seat is filled,
and that the assignment your algorithm returns is stable.
Solutions: First, the algorithm terminates. This follows by similar reasoning to the original propose-
and-reject algorithm: in each round (except the last), at least one discussion section is crossed off the
list of some rejected students.
Second, every seat is filled. Suppose some discussion section u has an unfilled seat at the end. Then
the total number of students who applied to u must have been fewer than its quota qu (since the Im-
provement Lemma in part(b) ensures that a waitlist slot, once filled, will never later be unfilled). But
the only students who do not apply to u are those who find a slot in some other discussion section. And
since we are told that there are more students than seats, the number of students applying to u must be
at least qu.
Finally, the assignment is stable:

• Suppose there is a student-section pair (s,u) such that s prefers u to her discussion section u′ in
the final allocation. Then s must have proposed to u prior to proposing to u′, and was rejected by
u. Thus immediately after rejecting s, u must have had a full waitlist in which every student was
preferred to s. By the Improvement Lemma, the same holds at all future times and hence at the
end. Thus u does not prefer s to any of its assigned students, as required.

• Suppose s is a student left unassigned at the end. Consider any discussion section u. Since s must
have applied to and have been rejected from all discussion sections, this holds in particular for
u. Reasoning similar as in the previous case, using the Improvement Lemma, we see that in the
final allocation, u prefers all its students to s. Therefore u does not prefer s to any of its assigned
students, as required.

This concludes the proof that our algorithm finds a stable assignment when terminates.

6. Long Courtship

(a) Run the traditional propose-and-reject algorithm on the following example:

Man Preference List
1 A > B >C > D
2 B >C > A > D
3 C > A > B > D
4 A > B >C > D

Woman Preference List
A 2 > 3 > 4 > 1
B 3 > 4 > 1 > 2
C 4 > 1 > 2 > 3
D 1 > 2 > 3 > 4

Solutions: The stable pairing reached by male propose-and-reject algorithm is {(1,D),(2,A),(3,B),(4,C)}.

Woman Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10

A 1, 4 4 4 4, 3 3 3 3, 2 2 2 2
B 2 2, 1 1 1 1, 4 4 4 4, 3 3 3
C 3 3 3, 2 2 2 2, 1 1 1 1, 4 4
D 1

EECS 70, Fall 2014, Homework 3 9



(b) We know from the notes that the propose-and-reject algorithm must terminate after at most n2 pro-
posals. Prove a sharper bound showing that the algorithm must terminate after at most n(n− 1)+ 1
proposals. Is this instance a worst-case instance for n = 4? How many days does the algorithm take on
this instance?
Solutions:
If we consider a scenario where every man has proposed to n−1 women, then either every woman has
received a proposal and thus every woman has accepted a proposal and the algorithm terminates, or
there is one woman who has never received a proposal. Since there are n men, the maximum number
of possible proposals must be n(n−1)+1, where 1 is added to account for the last woman to whom a
proposal might be extended on the last day.
In the example above there were 13 = 4(4−1)+1 proposals in 10 days.

7. Better Off Alone

In the stable marriage problem, suppose that some men and women have standards and would not just settle
for anyone. In other words, in addition to the preference orderings they have, they prefer being alone to
being with some of the lower-ranked individuals (in their own preference list). A pairing could ultimately
have to be partial, i.e., some individuals would remain single.

The notion of stability here should be adjusted a little bit. A pairing is stable if

• there is no paired individual who prefers being single over being with his/her current partner,

• there is no paired man and paired woman that would both prefer to be with each other over their current
partners, and

• there is no single man and single woman that would both prefer to be with each other over being single.

(a) Prove that a stable pairing still exists in the case where we allow single individuals. You can approach
this by introducing imaginary mates that people “marry” if they are single. How should you adjust the
preference lists of people, including those of the newly introduced imaginary ones for this to work?
Solutions: Following the hint, we introduce an imaginary mate (let’s call it a robot) for each person.
Note that we introduce one robot for each individual person, i.e. there are as many robots as there are
people. For simplicity let us say each robot is owned by the person we introduce it for.
Each robot is in love with its owner, i.e. it puts its owner at the top of its preference list. The rest of
its preference list can be arbitrary. The owner of a robot puts it in his/her preference list exactly after
the last person he/she is willing to marry. i.e. owners like their robots more than people they are not
willing to marry, but less than people they like to marry. The ordering of people who someone does
not like to marry as well as robots he/she does not own is irrelevant as long as they all come after their
robot.
To illustrate, consider this simple example: there are three men 1,2,3 and three women A,B,C. The
preference lists for men is given below:

Man Preference List
1 A > B
2 B > A >C
3 C

and the following depicts the preference lists for women:

EECS 70, Fall 2014, Homework 3 10



Woman Preference List
A 1
B 3 > 2 > 1
C 2 > 3 > 1

In this example, 1 is willing to marry A and B and he likes A better than B, but he’d rather be single
than to be with C. On the other side B has a low standard and does not like being single at all. She
likes 3 first, then 2, then 1 and if there is no option left she is willing to be forced into singleness. On
the other hand, A has pretty high standards. She either marries 1 or remains single.
According to our explanation we should introduce a robot for each person. Let’s name the robot
owned by person X as RX . So we introduce male robots RA,RB,RC and female robots R1,R2,R3. Now
we should modify the existing preference lists and also introduce the preference lists for robots.
According to our method, 1’s preference list should begin with his original preference list, i.e. A > B.
Then comes the robot owned by 1, i.e. R1. The rest of the ordering, which should include C and R2,R3
does not matter, and can be arbitrary.
For B, the preference list should begin with 3 > 2 > 1 and continue with RB, but the ordering between
the remaining robots (RA and RC) does not matter.
What about robots’ preference lists? They should begin with their owners and the rest does not matter.
So for example RA’s list should begin with A, but the rest of the humans/robots (B, C, R1, R2, and R3)
can come in any arbitrary order.
So the following is a list of preference lists that adhere to our method. There are arbitrary choices
which are shown in bold (everything in bold can be reordered within the bold elements).

Man Preference List
1 A > B > R1 > 3 > R3 > R2
2 B > A >C > R2 > R1 > R3
3 C > R3 > R1 > R3 > A > B

RA A > B > C > R1 > R2 > R3
RB B > R1 > R2 > R3 > A > C
RC C > A > R2 > B > R1 > R3

and the following depicts the preference lists for women and female robots:

Woman Preference List
A 1 > RA > 3 > RB > 2 > RC
B 3 > 2 > 1 > RB > RC > RA
C 2 > 3 > 1 > RC > RA > RB
R1 1 > RB > 2 > RC > 3 > RA
R2 2 > RA > RC > 1 > 3 > RB
R3 3 > 2 > 1 > RA > RC > RB

Now let us prove that a stable pairing between robots and owners actually corresponds to a stable
pairing (with singleness as an option). This will finish the proof, since we know that in the robots and
owners case, the propose and reject algorithm will give us a stable matching.
It is obvious that to extract a pairing without robots, we should simply remove all pairs in which there
is at least one robot (two robots can marry each other, yes). Then each human who is not matched is
declared to be single. It remains to check that this is a stable matching (in the new, modified sense).
Before we do that, notice that a person will never be matched with another person’s robot, because

EECS 70, Fall 2014, Homework 3 11



if that were so he/she and his/her robot would form a rogue couple (the robot’s love is there, and the
owner actually likes his/her robot more than other robots).

i. No one who is paired would rather break out of his/her pairing and be single. This is because if
that were so, that person along with its robot would have formed a rogue couple in the original
pairing. Remember, the robot loves its owner more than anything, so if the owner likes it more
than his/her mate too, they would be a rogue couple.

ii. There is no rogue couple. If a rogue couple m and w existed, they would also be a rogue couple in
the pairing which includes robots. If neither m nor w is single, this is fairly obvious. If one or both
of them are single, they prefer the other person over being single, which in the robots scenario
means they prefer being with each other over being with their robot(s) which is their actual match.

This shows that each stable pairing in the robots and humans setup gives us a stable pairing in the
humans-only setup. It is noteworthy that the reverse direction also works. If there is a stable pairing
in the humans-only setup, one can extend it to a pairing for robots and humans setup by first creating
pairs of owners who are single and their robots, and then finding an arbitrary stable matching between
the unmatched robots (i.e. we exclude everything other than the unmatched robots and find a stable
pairing between them). To show why this works, we have to refute the possibility of a rogue pair.
There are three cases:

i. A human-human rogue pair. This would also be rogue pair in the humans-only setup. The humans
prefer each other over their current matches. If their matches are robots, that translates to them
preferring each other over being single in the humans-only setup.

ii. A human-robot rogue pair. If the human is matched to his/her robot, our pair won’t be a rogue pair
since a human likes his/her robot more than any other robot. On the other hand if the human is
matched to another human, he/she prefers being with that human over being single which places
that human higher than any robot. Again this refutes the human-robot pair being rogue.

iii. A robot-robot rogue pair. If both robots are matched to other robots, then by our construction, this
won’t be a rogue couple (we explicitly selected a stable matching between left-alone robots). On
the other hand, if either robot is matched to a human, that human is its owner, and obviously a
robot loves its owner more than anything, including other robots. So again this cannot be a rogue
pair.

This completes the proof.

(b) As you saw in the lecture, we may have different stable pairings. But interestingly, if a person remains
single in one stable pairing, s/he must remain single in any other stable pairing as well (there really is
no hope for some people!). Prove this fact by contradiction.
Solutions: We will perform proof by contradiction. Assume that there exists some man m1 who is
paired with a woman w1 in stable pairing S and unpaired in stable pairing T . Since S is a stable pairing
and m1 is unpaired, w1 must be paired in T with a man m2 whom she prefers over m1. (If w1 were
unpaired or paired with a man she does not prefer over m1, then (m1,w1) would be a rouge couple,
which is a contradiction.)

Since m2 is paired with w1 in T , he must be paired in S with some woman w2 whom m2 prefers over
w1. This process continues (w2 must be paired with some m3 in T , m3 must be paired with some w3
in S, etc.) until all persons are paired. Since this requires m1 to be paired in T , where he is known
to be unpaired, we have reached a contradiction. Therefore, our assumption must be false, and there
cannot exist some man who is paired in a stable pairing S and unpaired in a stable pairing T . A similar
argument can be used for women.

EECS 70, Fall 2014, Homework 3 12



Since no man or woman can be paired in one stable pairing and unpaired in another, every man or
woman must be either paired in all stable pairings or unpaired in all stable pairings.

Here is another possible proof:
We know that some male-optimal stable pairing exists. Call this pairing M. We first establish two
lemmas.

Lemma 1. If a man is single in male-optimal pairing M, then he is single in all other stabling pairings.
Proof. Assume there exists a man that is single in M but not single in some other stable pairing M′.
Then M would not be a male-optimal pairing, so this is a contradiction.

Lemma 2. If a woman is paired in male-optimal pairing M, she is paired in all other stable pairings.
Proof. Assume there exists a woman that is paired in M but single in some other stable pairing M′.
Then M would not be female-pessimal, so this is a contradiction.

Let there be k single men in M. Let M′ be some other stable pairing. Then by Lemma 1, we know
single men in M′ will be greater than or equal to k. We also know that there are n− k paired men and
women in M. Then by Lemma 2, we know that the number of paired women in M′ will be greater than
or equal to n− k.

Now, we want to prove that if a man is paired in M, then he is paired in every other stable pairing. We
prove this by contradiction. Assume that there exists a man m that is paired in M but is single in some
other stable pairing M′. Then there must be strictly greater than k single men in M′, and thus strictly
greater than k single women in M′. Since there are strictly greater than k single women in M′, there
must be strictly less than n− k paired women in M′. But this contradicts that the number of paired
women in M′ will be greater than or equal to n− k.

We also have to prove that if a woman is single in M, then she must be single every other stable
pairing. We again prove this by contradiction. Assume that there exists a woman w that is single in
M and paired in some other stable pairing M′. Then there are strictly greater than n− k paired women
in M′, which means there are strictly greater than n− k paired men in M′. This means there must be
strictly less than k single men in M′. But this contradicts that the number of single men in M′ will be
greater than or equal to k.

Since we have proved both 1) If a man is single in M then he is single in every other stable pairing and
2) If a man is paired in M then he is paired in every other stable pairing (note that the contrapositive of
this is if a man is single in any other stable pairing, then this man is single in M), we know that a man
is single in M if and only if he is single in every other stable pairing. Similarly, since we have proved
both 1) If a woman is single in M then she is single in every other stable pairing and 2) If a woman is
paired in M then she is paired in every other stable pairing, we know that a woman is single in M if
and only if she is single in every stable pairing. Thus we have proved that if a person is single in one
stable pairing, s/he is single in every stable pairing.

8. Write Your Own Problem

Write your own problem related to this week’s material and solve it. You may still work in groups to
brainstorm problems, but each student should submit a unique problem. What is the problem? How to
formulate it? How to solve it? What is the solution?

EECS 70, Fall 2014, Homework 3 13


