
EECS 70 Discrete Mathematics and Probability Theory
Fall 2014 Anant Sahai Homework 4
This homework is due September 29, 2014, at 12:00 noon.

1. Modular Arithmetic Lab
In Python, you can perform many common modular arithmetic operations. For example, the modular reduc-
tion operator is represented by the % operator (e.g. 7 % 2 returns 1). In this week’s Virtual Lab, we will
explore a few basic modular arithmetic and primality testing algorithms, as well as how to implement them
in Python.

Please download the IPython starter code from Piazza or the course webpage, and answer the following
questions.

(a) Implement the function mod_exp, which takes three parameters x,y, and m, and computes (xy) mod
m using repeated squaring. Do NOT use Python’s built-in pow function.

(b) Implement the function gcd, which takes a pair of natural numbers x,y, and computes their greatest
common divisor.

(c) Implement the egcd function, which takes a pair of natural numbers x >= y, and returns a triple of
integers (d,a,b) such that d = gcd(x,y) = ax+by.
Use the function egcd to find the positive inverse of 117 mod 103, of 17947 mod 222, and of 1812647
mod 1234567.
The answers are 81, 19, and 710348, respectively.

(d) Implement the function is_prime, which checks if a positive number x is a prime number. A naive
implementation would be fine here; we’ll look at more efficient implementations in later questions.

(e) The Sieve of Eratosthenes is a simple, ancient algorithm for finding all prime numbers up to any given
limit. It does so by iteratively marking as composite (i.e. not prime) the multiples of each prime,
starting with the multiples of 2.
Implement the function sieve, which takes a positive integer n, and returns a list of all primes less
than or equal to n. A sample execution of the algorithm is given in the code skeleton.

Reminder: When you finish, don’t forget to convert the notebook to pdf and merge it with your written
homework. Please also zip the ipynb file and submit it as hw4.zip.

2. Just Can’t Wait

Joel lives in Berkeley. He mainly commutes by public transport, i.e., bus and BART. He hates waiting while
transferring, and he usually plans his trip so that he can get on his next vehicle immediately after he gets off
the previous one (zero transfer time). Tomorrow, Joel needs to take an AC Transit bus from his home stop
to the Downtown Berkeley BART station, then take BART into San Francisco.

(a) The bus arrives at Joel’s home stop every 22 minutes from 6:05am onwards, and it takes 10 minutes
to get to the Downtown Berkeley BART station. The train arrives at the station every 8 minutes
from 4:25am onwards. What time is the earliest bus he can take to be able to transfer to the train
immediately? Show your work. (Please do not find the answer by listing all the schedules.)
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The earliest AC Transit bus Joel can take is at 7:11am, from which he can transfer to BART immedi-
ately after he gets off the bus at 7:21am.

Let the xth bus (zero-based) be the bus Joel can take with zero transfer time, and let the yth train (zero-
based) be the train that he will connect to. Taking the time the BART starts running (4:25am) as a
reference point, let t be the time in minutes from 4:25am to the transfer time to the yth train 1. Figure 1
shows the timeline.

4:25am
BART starts

6:05am
Bus starts

Taking the bus Transferring
to BART

100 minutes 10 minutes22x
8y

Figure 1: Timeline

From the timeline, we see the relation between x, y, and t,

t = 100+22x+10 = 8y

8y−22x = 110

4y−11x = 55 (1)

We can use the Extended Euclid’s algorithm to solve for x,y ∈ Z in Equation (1), starting with finding
the GCD of 11 and 4 with the Euclid’s algorithm.

11 = 4(2)+3 (2)

4 = 3(1)+1 (3)

3 = 1(3)+0 (4)

Equation (4) tells us that gcd(11,4) = 1. Working our way back up, we rearrange Equation (3) to write
1 as a linear combination of 3 and 4,

1 = 4−3(1)

1 = 4−(11−4(2))(1) [Substituted 3 with values from Equation (2)]

1 = 4−11+4(2)

1 = 4(3)−11 (5)

Now we have solved a very similar equation to Equation(1), 4a− 11b = 1, where a and b are both
integers. How can we use this to solve Equation (1)? We will present two ways to do so.

1st Approach: Multiplying Equation (5) by 55,

55(4(3)−11) = 55

4(165)−11(55) = 55

We have found one possible (x,y) = (165,55)! But will that give the first transfer time of the day?
Notice that once the bus and train coincides, they will coincide again every 88 minutes. (Because 88

1Using any other time as a reference point works too, i.e., midnight, 7:00am (and find the BART departure after 7:00am), etc.
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is the Least Common Multiple2 of 22 and 8.) In other words, every 4th bus will coincide again with
every 11th train. Therefore, we know that the 55th bus and the 165th train are not the first ones Joel can
take, since the 55−4 = 51st bus and 165−11 = 154th bus apparently coincides too. Mathematically,

4(165)−11(55) = 55

11(4)−4(11)+4(165)−11(55) = 55 [11(4)−4(11) = 0]

4(165−11)−11(55−4) = 55

4(154)−11(51) = 55

Doing this 13 times gives us the first bus and train that coincide (one more time and we’ll get a bus
that hasn’t started running),

4(165)−11(55) = 55

13(11(4)−4(11))+4(165)−11(55) = 55 [13(11(4)−4(11)) = 0]

11(52)−4(143)+4(165)−11(55) = 55

4(165−143)−11(55−52) = 55

4(22)−11(3) = 55 (6)

Therefore, the 3rd and the 22th train are the first bus and train Joel can take with no transfer time. The
3rd bus departs at 6:05am + 22(3) minutes = 6:05am + 1:06 hours = 7:11am. The 22th train departs at
4:25am + 8(22) minutes = 4:25am + 2:56 hours = 7:21am. ◻

2nd Approach: Variable elimination. We modulo both sides of Equation (1) with 11 to eliminate x,

Left-hand side: (4y−11x) mod 11 = (4y mod 11)−(11x mod 11) = 4y,

Right-hand side: 55 mod 11 = 0,

and form a congruence,

4y ≡ 0 (mod 11). (7)

From Equation (5), 3 is the multiplicative inverse of 4 modulo 11. Multiplying both sides of the
congruence (7) with 3 gives us y,

3 ⋅4y ≡ 3 ⋅0 (mod 11)

y ≡ 0 (mod 11),

y ∈ {. . . ,0,11,22,33, . . .}.

Since the bus hasn’t started running when the 0th and 11th trains run, the 22th train is the first train to
connect to. The 22th train departs at 4:25am + 8(22) minutes = 4:25am + 2:56 hours = 7:21am. The
bus that arrives the BART station at 7:21am departs Joel’s home stop at 7:21am - 10 minutes = 7:11am.

(This approach is convenient, but it has a pitfall. Because we eliminate x completely, we wouldn’t
know when no solution exists unless we explicitly check if the set of y’s we found gives valid x’s.) ◻

2Read more at http://en.wikipedia.org/wiki/Least_common_multiple
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(b) Joel has to take a Muni bus after he gets off the train in San Francisco. The commute time on BART
is 33 minutes, and the Muni bus arrives at the San Francisco BART station every 17 minutes from
7:12am onwards. What time is the earliest bus he could take from Berkeley to ensure zero transfer
time for both transfers? If all bus/BART services stop just before midnight, is it the only bus he can
take that day? Show your work.

The first AC Transit bus Joel can take is at 11:35am, from which he can connect to BART at 11:45am,
and then Muni bus at 12:18pm. This is the only bus of the day that he can avoid waiting for both
transfers.

From part (a), we know that the soonest time Joel can arrive the San Francisco BART station is 7:21am
+ 33 minutes = 7:54am, and that he can choose to arrive every 88 minutes after that, since it is the
interval AC Transit bus and BART coincides again. Let x be the number of times this 88-minute
interval occurs after 7:54am (x starts from 0), and yth bus (zero-based) be the Muni bus that Joel can
transfer to with zero transfer time. Taking the time the Muni bus starts running (7:12am) as a reference
point, let t be the time in minutes from 7:12am to the transfer time from BART to the yth Muni bus.
Figure 2 shows the timeline.

7:12am
Muni starts

42 minutes 88x
17y

7:54am
First possible arrival 

to the San Francisco BART Station

Transferring 
from BART to Muni

Figure 2: Timeline

Again, we write a relation between x,y, and t.

t = 42+88x = 17y

17y−88x = 42 (8)

The rest is quite similar to part (a). We find the GCD of 88 and 17 with the Euclid’s algorithm, and
then run the Extended Euclid’s algorithm to express it interms of linear combination of 88 and 17.

88 = 17(5)+3 (9)

17 = 3(5)+2 (10)

3 = 2(1)+1 (11)

2 = 1(2)+0 (12)

Equation (12) tells us that gcd(88,17)=1. Working our way back up, we rearrange Equation (11) to
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write 1 as a linear combination of 3 and 2,

1 = 3−2(1)

1 = 3−(17−3(5))(1) [Substituted 2 with values from Equation (10)]

1 = 3−17+3(5)

1 = 3(6)−17

1 = (88−17(5))(6)−17 [Substituted 3 with values from Equation (9)]

1 = 88(6)−17(30)−17

1 = 88(6)−17(31) (13)

Similarly, we will show two approaches to use Equation (13) to solve Equation (8).

1st Approach: Multiplying both sides of Equation (13) with 42,

42(88(6)−17(31)) = 42

88(252)−17(1302) = 42.

According to Equation (8), we have x = −252 and y = −1302. Since 88 and 17 are relatively primes, we
can get to the next pair of x and y by adding 17 to x and 88 to y at a time. Doing this 15 times gives us
the first valid x,y ≥ 0,

15(17(88)−88(17))+88(252)−17(1302) = 42 [15(17(88)−88(17)) = 0]

17(1320)−88(255)+88(252)−17(1302) = 42

88(252−255)−17(1302−1320) = 42

17(18)−88(3) = 42 (14)

Comparing Equation (14) to Equation (8), we get x = 3 and y = 18.

2nd Approach: Variable elimination. We modulo both sides of Equation (1) with 88 to eliminate x
and form a congruence,

17y ≡ 42 (mod 88). (15)

From Equation (13),

88(6)−17(31) = 1

17(31)−88(6) = −1

17(31) mod 88 = −1 (16)

Multiplying both sides of the congruence (15) with 31 gives us y,

31 ⋅17y ≡ 31 ⋅42 (mod 88)

−y ≡ 1302 (mod 88) [From Equation (16)]

y ≡ −70 (mod 88),

y ∈ {. . . ,−70,18,106, . . .}.

From either approach, the first Muni bus Joel can take with zero transfer time is the 18th bus at 7:12am
+ 17(18) minutes = 7:12am + 5:06 hours = 12:18pm. Subtracting the 33 minutes BART transit time,
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the BART departure time is 12:18pm - 33 minutes = 11:45am. Subtracting the 10 minutes AC Transit
travel time, the AC Transit bus departure time is 11:45am - 10 minutes = 11:35am.
Because the Least Common Multiple of 88 and 17 is 88×17 = 1496, it will take 1,496 minutes = 24
hours 56 minutes for all three buses and BART to coincide again. Since all services stop just before
midnight and restart at their respective times the next day, all three buses and BART coincide only
once a day, and what we found is the only bus Joel can take that day. ◻

3. Solution for ax ≡ b mod m
In the lecture notes, we proved that when gcd(m,a)= 1, a has a unique multiplicative inverse, or equivalently
ax≡ 1 mod m has exactly one solution x (modulo m). The proof of the unique multiplicative inverse (theorem
5.2) actually proved that when gcd(m,a) = 1, the solution of ax ≡ b mod m with unknown variable x is
unique. Now let’s consider the case where gcd(m,a) > 1 and see why there is no unique solution in this
case. Let’s consider the general solution of ax ≡ b mod m with gcd(m,a) > 1.

(a) Let gcd(m,a) = d. Prove that ax ≡ b mod m has a solution (that is, there exists an x that satisfies this
equation) if and only if b ≡ 0 mod d.
Necessary condition (ax ≡ b mod m has a solution Ô⇒ b ≡ 0 mod d):
If ax ≡ b mod m has a solution, we can write ax =my+b for some x,y ∈Z.
Since d is the greatest common divisor of m and a, we know that d∣a and d∣m. Therefore d divides
ax−my = b, or equivalently, b ≡ 0 mod d.

Sufficient condition (b ≡ 0 mod d Ô⇒ ax ≡ b mod m has a solution):
Consider the congruent equation a

d x ≡ b
d mod m

d . Since gcd(m,a) = d, we know that gcd(m
d ,

a
d ) = 1.

Therefore a
d x ≡ b

d mod m
d has a solution, or equivalently, ∃x,y ∈Z, such that a

d x = m
d y+ b

d .
Ô⇒ ax =my+b.
Ô⇒ x is a solution for ax ≡ b mod m.

Another proof for b ≡ 0 mod d Ô⇒ ax ≡ b mod m has a solution:
If d∣b, we can write b = kd for some k ∈ Z. Since gcd(m,a) = d, ∃w,y ∈ Z, such that aw+my = d.
Multiplying both sides by k, we get kaw+kmy = kd = b. So

akw+mky ≡ b mod m

akw ≡ b mod m

Then kw is a solution of ax ≡ b mod m.

(b) Let gcd(m,a) = d. Assume b ≡ 0 mod d. Prove that ax ≡ b mod m has exactly d solutions (modulo m).

From the proof of sufficient condition in part(a), we have shown that if x satisfies a
d x ≡ b

d mod m
d , then

x also satisfies ax ≡ b mod m. How about the reverse?
If x satisfies ax ≡ b mod m, then

ax =my+b for some y ∈Z

Ô⇒
a
d

x =
m
d

y+
b
d

Ô⇒ x satisfies
a
d

x ≡
b
d

mod
m
d
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We conclude the above proof as the following Lemma:
Lemma: ∀x ∈Z, x satisfies a

d x ≡ b
d mod m

d if and only if x satisfies ax ≡ b mod m.

Let x0 be the unique solution (modulo m
d ) of a

d x ≡ b
d mod m

d , denoting as x ≡ x0 mod m
d . Any x ∈ Z that

satisfies a
d x ≡ b

d mod m
d must be of the form x = x0+k m

d for some k ∈Z.
By the above Lemma, any x ∈ Z that satisfies ax ≡ b mod m will also be of the form x = x0+k m

d . Now
we will show that there are only d distinct solutions (modulo m) for ax ≡ b mod m among x = x0+ k m

d
∀k ∈Z.
Two solutions, x1 = x0+k1

m
d and x2 = x0+k2

m
d , are the same in modulo m if and only if

x0+k1
m
d
≡ x0+k2

m
d

mod m ⇐⇒ (k1−k2)
m
d
≡ 0 mod m

⇐⇒ (k1−k2)
m
d
= qm for some q ∈Z

⇐⇒ (k1−k2)m = qmd

⇐⇒ k1−k2 = qd

The above argument proved that two solutions with the form of x = x0+k m
d are equal mod m if and only

if k1 ≡ k2 mod d. Without loss of generality, we can construct solutions by letting k ∈ {0,1, ...,d −1}.
To be very specific, the d distinct solutions of ax ≡ b mod m are

x ≡ x0+k
m
d

mod m, k = 0,1, ...,d−1

(c) Solve for x: 77x ≡ 35 mod 42.
Since gcd(77,42) = 7 and 35 ≡ 0 mod 7, we can find a unique solution from 77

7 x ≡ 35
7 mod 42

7 :

11x ≡ 5 mod 6

−1x ≡ −1 mod 6 (because 11 ≡ −1 mod 6 and 5 ≡ −1 mod 6)

x ≡ 1 mod 6

The solution of 77
7 x ≡ 35

7 mod 42
7 is x ≡ 1 mod 6. Based on part(b), the solutions of 77x ≡ 35 mod 42 are

x ≡ 1+6k mod 42, k = 0,1, ...,6

4. Pentagons, Pentagrams, and Pythagoreans: a high-school geometry proof of the existence of irrational
numbers by way of Euclid’s Algorithm
According to historical accounts, the pentagram � was commonly used as a recognition sign between the
Pythagoreans, the members of Pythagoras’ school (about 500 BC). In this problem, we will establish a key
property of this figure in relation to the Euclidean algorithm, which offers a mathematical perspective on the
fascination with this symbol.

Recall that two non-negative real numbers (think of segment lengths) a,b are said to be commensurable if
there exists a third real g such that both a and b are some multiple of g: ∃k,k′ ∈ N ∶ a = kg,b = k′g. For
engineering practices, it is extremely useful to have such a g, as it stands for a common unit of measurement
between the two lengths. A pillar of Pythagoras teaching was that any two segment lengths are commensu-
rable.

(a) Let us recall the Euclidean algorithm on real non-negative inputs a,b. Without loss of generality, let
us assume a ≥ b. The Euclidean algorithm, which we denote by GCD, goes as follow:
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i. If b = 0 then return a.
ii. Else return GCD(b,a− ⌊a/b⌋b) (where x↦ ⌊x⌋ is the floor function).

Show that if a and b are commensurable, then the Euclidean algorithm terminates for these inputs.
Let us enumerate the argument calls to GCD: (a0,b0),(a1,b1),(a2,b2), . . . where a0 = a and b0 = b. By
definition, the algorithm terminates if and only if there exists some n such that bn = 0.
Suppose a and b are commensurable. Let g>0;x,y ∈N such that a= xg and b= yg. Let (x0,y0),(x1,y1), . . .
the sequence of argument calls to GCD for the integral inputs (x,y). We will show by induction that
we can rewrite the sequence (ai,bi) as:

(ai,bi) = (xig,yig)

This would prove that GCD(a,b) terminates. Indeed, we know that GCD(x,y) terminates, so there
exists some n such that yn = 0, thus bn = 0 and GCD(a,b) terminates.
The proof by induction is straightforward, except that we have to make sure that we do not overflow
past the termination n such that yn = 0. The induction hypothesis is:

Hi ∶= i ≤ n⇒ (ai,bi) = (xig,yig)

H0 holds by definition. Suppose Hi holds and i ≤ n−1. We have:

(ai+1,bi+1) = (bi,ai− ⌊ai/bi⌋bi)

= (yig,xig− ⌊(xig)/(yig)⌋yig)

= (yig,(xi− ⌊xi/yi⌋yi)g)

= (xi+1g,yi+1g)

which concludes our proof.

(b) Let ABCDE be a regular pentagon, meaning AB =BC =CD =DE =EA and ÊAB = ÂBC = B̂CD = ĈDE =

D̂EA; see Figure 3. Given that the sum of the interior angles of a pentagon is 540○, prove that EA < EB.
(Hint: You might find the Law of Sines useful.)
Because all interior angles are equal, ÊAB = 540○/5 = 108○. Since EA = AB, EAB is an isosceles
triangle, and B̂EA = ÊBA = (180○−108○)/2 = 36○. See Figure 4. According to the Law of Sines,

EA
sin ÊBA

=
EB

sin ÊAB
EA
EB

=
sin ÊBA
sin ÊAB

Since
ÊBA
ÊAB

=
36○

108○
< 1,

sin ÊBA
sin ÊAB

< 1, and thus,

EA
EB

=
sin ÊBA
sin ÊAB

< 1

EA < EB

◻
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A

B

CD

E
A’ B’

C’

D’

E’

Figure 3: Regular pentagon

A

B

CD

E
A’ B’

C’

D’

E’

36° 36°

108°

Figure 4: Interior angles of triangle EAB

(c) Show that A′AB′, EAB′, and EE ′B′ are isosceles triangles.
By symmetry, EAB, ABC, BCD, CDE, and DEA are all congruent triangles, thus ĈAB = D̂AE = ÊBA =

36○. (See Figure 5 for illustration.)
Continuing to calculate angles from the previous part,

• Â′AB = ÊAB− D̂AE −ĈAB = 108○−36○−36○ = 36○.
• ÊA′A = 180○−36○−36○ = 108○.
• ÂB′B = 180○−36○−36○ = 108○.
• ÂA′B′ = 180○−108○ = 72○.
• ÂB′A′ = 180○−108○ = 72○.

Since ÂA′B′ = ÂB′A′, AA′B′ is an isosceles triangle.
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A

B

CD

E
A’ B’

C’

D’

E’

36° 36°

36°
36°

36°

108° 108°
72° 72°

Figure 5: The inside angles

Next, since ÊAB′ = ÊAA′+ Â′AB′ = 36○+36○ = 72○ = Â′B′A, EAB′ is also an isosceles triangle.
Now consider triangle EE ′B′.

• By symmetry, Ê ′EB′ = Â′AB′ = 36○

• Ê ′A′B′ = ÊA′A = 108○

• By symmetry, EE ′A′ and A′AB′ are congruent triangles and E ′A′ = A′B′.
• Since, E ′A′ = A′B′, A′E ′B′ = A′B′E ′ = (180○ −108○)/2 = 36○. Since E ′EB′ = E ′B′E, EE ′B is an

isosceles triangle.

(d) Let A′, . . . , E ′ be the intersection points of the chords as in Figure 3. Show that A′B′C′D′E ′ is a regular
pentagon, i.e., all interior angles are equal and all sides are equal in length.
Interior angles: We already showed that E ′A′B′ = 108○ in the previous part, and by the symmetry
argument, A′B′C′ = B′C′D′ =C′D′E ′ =D′E ′A′ = E ′A′B′ = 108○.
Faces: Since A′AB′,B′BC′,C′CD′,D′DE ′, and E ′EA′ are all congruent triangles, E ′A′ = A′B′ = B′C′ =

C′D′ =D′E ′.

(e) Express E ′A′ and E ′B′ separately in terms of EA and EB.
Since EAB′ is an isosceles triangle, EB′ = EA.

E ′A′ = A′B′ = EB′−EA′

= EB′−(EB−EB′)

= 2EB′−EB

= 2EA−EB

From part (c), E ′B′ = E ′E because EE ′B′ is an isoscele triangle.

E ′B′ = E ′E = EA′ = B′B = EB−EB′ = EB−EA.
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(f) Using the previous elements, show that EB and EA are incommensurable. (In modern terms, we would
say that EB/EA is irrational.)
By the contrapositive of question 1, to show that EB and EA are incommensurable, it suffices to show
that GCD(EB,EA) does not terminate (EB > EA by question 2).
As EA > 0, EB−EA > 0 and EB− 2EA < 0 by question 4, the next call to GCD is with arguments
(EA,EB−EA) = (EA,E ′B′). As E ′B′ > 0, EA−E ′B′ = 2EA−EB > 0 and EA−2E ′B′ = 3EA−2EB < 0
the next call is GCD(E ′B′,E ′A′).
Here we pause for a moment. We started by asking what is the GCD of the side of the pentagon
and its chord, and two euclidean algorithm steps later, we are asked the exact same question, only on
the smaller pentagon A′B′C′D′E ′. Now, all the reasoning that applied in the previous two GCD steps
can also apply in the next two GCD steps, only to go from A′B′C′D′E ′ to the immediately smaller
pentagram contained in it. This process will repeat to infinity, always considering smaller and smaller
pentagons, without ever reaching a case where the size of the pentagon side is 0. Thus, GCD(EB,EA)

does not terminate, and EB and EA are incommensurable.

5. Midterm question 3
Re-do midterm question 3.

Solution will be posted separately

6. Midterm question 4
Re-do midterm question 4.

Solution will be posted separately

7. Midterm question 5
Re-do midterm question 5.

Solution will be posted separately

8. Midterm question 6
Re-do midterm question 6.

Solution will be posted separately

9. Midterm question 7
Re-do midterm question 7.

Solution will be posted separately

10. Midterm question 8
Re-do midterm question 8.

Solution will be posted separately

11. Midterm question 9
Re-do midterm question 9.

Solution will be posted separately

12. Midterm question 10
Re-do midterm question 10.

Solution will be posted separately
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13. Midterm question 11
Re-do midterm question 11.

Solution will be posted separately

14. Midterm question 12
Re-do midterm question 12.

Solution will be posted separately

15. Midterm question 13
Re-do midterm question 13.

Solution will be posted separately

16. Write your own problem
Write your own problem related to this week’s material and solve it. You may still work in groups to
brainstorm problems, but each student should submit a unique problem. What is the problem? How to
formulate it? How to solve it? What is the solution?

EECS 70, Fall 2014, Homework 4 12


