
EECS 70 Discrete Mathematics and Probability Theory
Fall 2014 Anant Sahai Homework 5
This homework is due October 6, 2014, at 12:00 noon.

1. Modular Arithmetic Lab (continue)

Oystein Ore described a puzzle with a dramatic element from Brahma-Sphuta-Siddhanta (Brahma’s Correct
System) by Brahmagupta (born 598 AD) as follows.

An old woman goes to market and a horse steps on her basket and crushes the eggs. The rider offers to pay
for the damages and asks her how many eggs she had brought. She does not remember the exact number,
but when she had taken them out two at a time, there was one egg left. The same happened when she picked
them out three, four, five, and six at a time, but when she took them seven at a time they came out even. What
is the smallest number of eggs she could have had?

In the first part of this week’s Virtual Lab, we will implement the functions to solve the above puzzle based
on the Chinese Remainder Theorem. In the second part, we will explore two very useful theorems in modular
arithmetic: Fermat’s Little Theorem and Euler’s Theorem.

Please download the IPython starter code from Piazza or the course webpage, and answer the following
questions.

We will reuse a lot of functions implemented in last week’s lab. You will be given sample implementations of
these functions; there is no need to copy and paste your work from last week.

(a) Implement the function chinese_remainder using the function inverse(x, m), which com-
putes the positive inverse of x modulo m. Given a list of tuples (ai,ni) where the ni’s are pairwise
coprime, this function solves for x such that x≡ ai (mod ni) and 0≤ x < ∏(ni).

(b) Write the system of congruences that describes the above puzzle, and solve it using chinese_remainder.
Remember that the ni’s are pairwise coprime, and make sure to double check if your solution is in fact
the smallest number of eggs that satisfies the congruences.
Solutions: The number of broken eggs, x, must satisfy:
x≡ 1 mod 2
x≡ 1 mod 3
x≡ 1 mod 4
x≡ 1 mod 5
x≡ 1 mod 6
x≡ 0 mod 7
Unfortunately, the moduli of the congruences are currently not pairwise coprime. As seen in Discus-
sion 5M’s problem 3, we can eliminate some redundant information.
First, x ≡ 1 mod 4 can be written as x = 4k + 1. This implies that x is odd, which means the first
congruence, x≡ 1 mod 2, is redundant.
Then, recall from Discussion 4M and 5M that we can break x ≡ 1 mod 6 into two congruences, mod
2 and mod 3, respectively, because 6 = 2 · 3. From x ≡ 1 mod 6, we have x = 6k+ 1. This implies
that x is odd (which we already know is redundant), and x modulo 3 will give us 1 (which we already

EECS 70, Fall 2014, Homework 5 1

have above). Hence, x≡ 1 mod 6 is also redundant, and we can also eliminate this congruence before
running chinese_remainder.
In summary, to use the Chinese Remainder Theorem, we will omit the congruences x ≡ 1 mod 2 and
x ≡ 1 mod 6 so that the moduli of the remaining congruences (3, 4, 5 and 7) are relatively prime in
pairs.
Using the function chinese_remainder, we can solve for x = 301 as follows:
chinese_remainder([(1, 3), (1, 4), (1, 5), (0, 7)])

As this value of x is odd and satisfies x≡ 1 mod 6, it is the smallest solution of the broken eggs puzzle.

(c) In lecture, we studied Fermat’s Little Theorem, which states that if p is a prime number, then for any
integer a, the number ap−a is an integer multiple of p.
In part (d) of last week’s Virtual Lab, you have implemented a naive way of testing whether a positive
integer p is prime. Based on Fermat’s Little Theorem, we can come up with a new primality test as
follows.
For a randomly-chosen a, where 1 ≤ a ≤ p− 1, test if a(p−1) ≡ 1 (mod p). If the equality does not
hold, then p is composite. If the equality does hold, then we can say that p is a probable prime.
Your task is to implement the function is_prime_fermat, which basically conveys the idea de-
scribed above. We will give you the starter code to choose a randomly.
Test your implementation and compare it with the one from last week. For example, what do you see
when you run is_prime(561) v.s. is_prime_fermat(561)?
For those who are interested, 561 is a Carmichael Number, which is a composite number n that passes
the Fermat Primality Test for all choices of a. Most composite numbers pass the test for very few
choices of a, so by picking a few random a, you can detect them with high probability. The existence
of Carmichael Numbers means that even though the test works (with high probability) for almost all
numbers, it does not work for all numbers.
Solutions: is_prime(561) always returns False, whereas is_prime_fermat(561) occas-
sionally returns True for some choices of a. (It returns True for every choice of a satisfying 1 < a < n
and gcd(a,n) = 1, i.e. a and n are relatively prime).

(d) Consider the problem of trying to find the value of a tower of iterated exponents modulo some prime
number p. We know from the running time of the modular exponentiation algorithm that this can be
done quickly for expressions of the form

xx mod p

Moreover, because of Fermat’s Little Theorem (FLT), we know that we can even quickly calculate
expressions of the form

xxx
mod p

Here we use FLT to change the exponent to xx mod (p−1), which we can then calculate quickly using
the modular exponentiation algorithm.
Great! But now what if we want to take this even higher? If our exponent was instead xxx

mod (p−1),
what can we do? We can’t use Fermat’s Little Theorem here because there is no guarantee that p−1 is
prime (in fact, unless p = 3, it’s not). We have to calculate the exponent xx without a modulus. If x is
sufficiently large, we’ll be working with numbers so big they’ll fry your computer (try asking Python
for 1000000**1000000).

EECS 70, Fall 2014, Homework 5 2

In order for calculations of this form to be tractable, we need some way to bubble the modulus up
through the exponents so we can continue using the modular exponentiation algorithm.
In 1763, Euler generalized Fermat’s Little Theorem to not require the modulus to be prime. Before we
introduce Euler’s Theorem though, we need to know about Euler’s totient function.
Euler’s totient function is defined as follows:

φ(n) = |{i : 1≤ i≤ n,gcd(n, i) = 1}|

In other words, φ(n) is the total number of positive integers less than n which are relatively prime to it,
where 1 is counted as being relatively prime to all numbers. Since a number less than or equal to and
relatively prime to a given number is called a totative, the totient function φ(n) can be simply defined
as the number of totatives of n. For example, there are eight totatives of 24 (1,5,7,11,13,17,19, and
23), so φ(24) = 8.
Implement the function totient, which returns the number of positive integers less than n which are
relatively prime to it. What can you conclude about the value of φ(n) when n is prime? Why does this
make sense?
Solutions: When n is prime, φ(n) = n−1. This makes sense because all the numbers from 1 to n−1
are relatively prime to n.

(e) Euler’s theorem states that for coprime a,n

aφ(n) ≡ 1 (mod n)

This is very similar to Fermat’s Little Theorem, but instead of requiring n to be prime, we only require
that it is coprime to a, a looser condition. As a sanity check, verify that this works for prime n.
As with Fermat’s Little Theorem, this theorem can be massaged into a more useful form with some
algebra.

ab mod n≡ ab mod φ(n) mod n

Implement the function tower which, given x and some prime p, calculates the value of

xxxx

mod p

Hint: break the chain of exponents into three parts in a bottom-up approach using the formula above.
Then, calculate each part in a top-down approach. Use the functions mod_exp and totient defined
in previous parts.
Solutions: We first break the chain of exponents into three parts.

xxxx

mod p

≡ x(x
xx

mod φ(p)) mod p

≡ x(x
xx

mod (p−1)) mod p

≡ x(x
(xx mod φ(p−1)) mod (p−1)) mod p

We now calculate each individual part using mod_exp,
first = mod_exp(x, x, totient(p-1))
second = mod_exp(x, first, p-1)

EECS 70, Fall 2014, Homework 5 3

, and simply return mod_exp(x, second, p) as the final answer.
Side note: It’s perfectly fine if you went one step further and applied the formula to the innermost
layer.

x(x
(xx mod φ(p−1)) mod (p−1)) mod p

≡ x(x
(x(x mod φ(φ(p−1))) mod φ(p−1)) mod (p−1)) mod p

In that case, the code above would be modified as follows.
first = x % totient(totient(p-1))
second = mod_exp(x, first, totient(p-1))
third = mod_exp(x, second, p-1)

We would then return mod_exp(x, third, p) as the final answer.
We assumed for the implementation of tower that x is coprime with totient(p) = p - 1. This
doesn’t hold generally, but the example given in the skeleton works because 21 is coprime with both
101 and 100.

(f) This question aims to introduce you to basic plotting in Python with Matplotlib. First, we will generate
50 evenly spaced points from 0 to 10.
x = np.linspace(0, 10, 50)

Now let’s say we want to plot the line y = 2x+1. What should we do?
It’s exactly how you would guess it...
y = 2*x + 1
plt.plot(x, y)

Now it’s your turn. Generate 50 points between −5 and 5, then plot the curve y = x2− 4 as seen in
Note 7. Add the x-axis (y = 0) to your plot. Can you spot the two roots of y = x2−4?
In future labs, we will explore more powerful features of Matplotlib, as well as do more fun plotting
with polynomials. Stay tuned!
Solutions:
x = np.linspace(-5, 5, 50)
y = x**2 - 4
x_axis = x * 0
plt.plot(x, x_axis)
plt.plot(x, y)

EECS 70, Fall 2014, Homework 5 4

You can easily spot the two roots −2 and 2 of y = x2−4 from the above graph.

Reminder: When you finish, don’t forget to convert the notebook to pdf and merge it with your written
homework. Please also zip the ipynb file and submit it as hw5.zip.

2. Counting by remainder

Over 1000 students walked out of class and marched to protest the war. To count the exact number of
students protesting, the chief organizer lined the students up in columns of different length. If the students
are arranged in columns of 2, 3, or 4, 1 person is left out. Also, we know the number students is a multiple
of 5. What is the minimum number of students present?

Solutions: Since we know the number of students is a multiple of 5, let the number of students be 5x. The
problem statement allows us to write the system of congruences

5x≡ 1(mod 2)

5x≡ 1(mod 3)

5x≡ 1(mod 4).

(1)

Similarly to 1(b), we know that 5x ≡ 1(mod2) is redundant information given 5x ≡ 1(mod4), since 5x =
4k+1 implies 5x is odd. Omitting the relation 5x ≡ 1(mod 2), we know that the above equations result in
5x ≡ 1(mod12), where we have used 12 = 3× 4. Now, we can use the extended Euclidean algorithm to
solve for the multiplicative inverse of 5 modulo 12 which we know exists, since gcd(12,5) = 1. Running
egcd(12,5) gives us the values d = 1, a =−2, b = 5. (Note that to check your work, you would verify that
1 =−2(12)+5(5)). Therefore x≡ 5 (mod 12).

Now, we know that the number of students is 5x > 1000 where x ≡ 5 (mod 12). Thus, we we are looking
for the smallest number that satisfies x = 12t +5 where x ≥ 200. Solving for t, we see t > d195/12e= 17.
Thus, minimum number of students is 5× (12×17+5) = 1045.

3. Party Tricks

You are at a party celebrating your completion of the CS70 midterm. Show off your modular arithmetic
skills and impress your friends by quickly figuring out the last digit(s) of each of the following numbers:

(a) Find the last digit of 113142.
Solutions: First, we notice that 11≡ 1 (mod 10). So 113142 ≡ 13142 ≡ 1 (mod 10), so the last digit
is a 1.

EECS 70, Fall 2014, Homework 5 5

(b) Find the last digit of 99999.
Solutions: 9 is its own multiplicative inverse mod 10, so 92 ≡ 1 (mod 10). Then

99999 = 92(4999) ·9≡ 14999 ·9≡ 9 (mod 10),

so the last digit is a 9.
Another solution: We know 9≡−1 (mod 10), so

99999 ≡ (−1)9999 ≡−1≡ 9 (mod 10).

You could have also used this to say

99999 ≡ (−1)9998 ·9≡ 9 (mod 10).

(c) Find the last 5 digits of the binary representation of 31203.
Solutions: We’ve previously learned that any integer n can be written as

n = ck ·2k + ck−1 ·2k−1 + . . .+ c5 ·25 + c4 ·24 + c3 ·23 + c2 ·22 + c1 ·21 + c0 ·20,

where the ck’s give the binary representation of n. So since we want to find the last 5 digits, that
is, c4,c3,c2,c1, and c0, we will look at the number 31203 mod (25 = 32) to find the remaining part
c4 ·24 + c3 ·23 + c2 ·22 + c1 ·21 + c0 ·20.
Using Euler’s Totient Function,

316 ≡ 1 (mod 32),

and since 1203 = 16(75)+3, we have

31203 ≡ 316(75) ·33 ≡ 175 ·33 ≡ 27 (mod 32).

So the answer will be the number 27 represented in binary. If we didn’t know what the representation
of 27 in binary was, we could do the following conversion:

27/2 = 13 ·2+ 1

13/2 = 6 ·2+ 1

6/2 = 3 ·2+ 0

3/2 = 1 ·1+ 1

1/2 = 0 ·1+ 1 ,

so looking at the remainders above, we see the last five digits of 31203 represented in binary are 11011.

4. Fermat’s Little Theorem
Fermat’s Little Theorem in Lecture Note 6 [Theorem 6.1] states that for any prime p and any a ∈ {1,2, ..p−
1}, we have ap−1 ≡ 1(mod p). Without using induction, prove that ∀n ∈ N, n7−n is divisible by 42.

Solutions: We begin by breaking down 42 into prime factors: 42 = 7×3×2. Since 7,3, and 2 are prime,
we can apply Fermat’s Little Theorem, which says that ap ≡ a (mod p), to get the congruences

n7 ≡ n(mod 7), (2)

n3 ≡ n(mod 3), and (3)

n2 ≡ n(mod 2). (4)

EECS 70, Fall 2014, Homework 5 6

Now, let’s take (3) and multiply it by n3 ·n. This gives us

n7 ≡ n3 ·n3 ·n≡ n ·n ·n≡ n3 (mod 3),

and since by (3), n3 ≡ n (mod 3), this gives

n7 ≡ n (mod 3).

Similarly, we take (4) and multiply by n2 ·n2 ·n to get

n7 ≡ n2 ·n2 ·n2 ·n≡ n4 (mod 2).

Notice that n4 ≡ n2 ·n2 ≡ n ·n≡ n2 (mod 2), and by (4) n2 ≡ n (mod 2), so we have

n7 ≡ n (mod 2).

Now, since

n7 ≡ n(mod 7),

n7 ≡ n(mod 3), and

n7 ≡ n(mod 2),

we have that n7 ≡ n (mod 7×3×2), so n7 ≡ n (mod 42). Subtracting n from both sides of the congruence
gives n7−n≡ 0 (mod 42), which means n7−n is divisible by 42.

5. GCD and Divisions

(a) Let F(n) denote the nth Fibonacci number. Show that ∀n ∈ N, gcd(F(n+1),F(n)) = 1.
Solutions: We will prove this by induction.
Base case: For n = 0, we have F(1) = 1 and F(0) = 1; obviously gcd(1,1) = 1.
Inductive hypothesis: Assume gcd(F(n+1),F(n)) = 1 for some n≥ 1.
Inductive step: For n+1, since F(n+2) = F(n+1)+F(n), we have

gcd(F(n+2),F(n+1)) = gcd(F(n+1)+F(n),F(n+1))

= gcd(F(n+1),F(n))

= 1 (by the inductive hypothesis).

(b) Prove that for n≥ 1, if 935 divides n80−1, then 5,11 and 17 do not divide n.
Solutions:
Note that 935 = 5×11×17. We wish to prove that if n80 ≡ 1(mod 935) then 5,11,17 - n.
Since 5,11,17 are pairwise prime, by the Chinese Remainder Theorem we know n80 ≡ 1(mod5),
n80 ≡ 1(mod 11), and n80 ≡ 1(mod 17).
We will now prove the statement by contradiction. Let us now assume the contrary; i.e., that n80 ≡
1(mod 935) and either 5 | n or 11 | n or 17 | n. Then we have 3 possible cases:

• If 5 | n then, n = 5k, which implies, n≡ 0(mod 5) which in turn implies n80 ≡ 0(mod 5)
• If 11 | n then, n = 11k, which implies, n≡ 0(mod 11) which in turn implies n80 ≡ 0(mod 11)
• If 17 | n then, n = 17k, which implies, n≡ 0(mod 17) which in turn implies n80 ≡ 0(mod 17)

EECS 70, Fall 2014, Homework 5 7

which are all false as under the assumptions that n80 ≡ 1(mod 935), since this implies n80 ≡ 1(mod 5),
n80 ≡ 1(mod 11), and n80 ≡ 1(mod 17). Thus we have reached a contradiction, and we must have that
5,11,17 - n.

6. Write Your Own Problem

Write your own problem related to this week’s material and solve it. You may still work in groups to
brainstorm problems, but each student should submit a unique problem. What is the problem? How to
formulate it? How to solve it? What is the solution?

EECS 70, Fall 2014, Homework 5 8

