
EECS 70 Discrete Mathematics and Probability Theory
Fall 2014 Anant Sahai Homework 6
This homework is due October 13, 2014, at 12:00 noon.

1. Try It Out (optional)

Please do the online problems on FLT and RSA. Give us your brief comments on how you found them and
how you think that they helped you understand the material better for this homework.

2. RSA Lab

In this week’s Virtual Lab, we will implement a toy RSA cryptosystem. We will start by generating the
public and private keys for RSA using functions we implemented in the past two weeks (mod_exp, egcd,
etc.). Then, we will encrypt and decrypt messages with the RSA function (for example, you will decrypt a
secret and tell us in your written homework what the original message is). Finally, we will transition into
Polynomials and implement Lagrange Interpolation for a degree 2 polynomial.

Please download the IPython starter code from Piazza or the course webpage, and answer the following
questions.

(a) Warmup: Implement the function pairwise_coprime, which returns True if every pair of numbers
in the input list is coprime and False otherwise.

(b) In this part, we will give you sample implementations of the functions is_probable_prime
(which uses the Miller-Rabin algorithm) and gen_prime, which generates a large pseudorandom
prime.
Implement the function gen_key, which generates a pair of public (N,e) and private keys (d) for
RSA. Refer to Lecture Note 6 for more details on how RSA key generation works.
For simplicity, you can generate e as a random integer between 1 and (p− 1)(q− 1) as long as it’s
coprime with (p−1)(q−1) and return the keypair as a triple (N,e,d).
In practice, e is usually chosen to be the minimum integer coprime with (p−1)(q−1), however.

(c) Implement the functions encrypt_integer and decrypt_integer, which encrypts and de-
crypts a positive integer x, respectively, using the RSA function. Make sure to test your implementation
by checking that
decrypt_integer(encrypt_integer(x, N, e), N, d) == x

for some positive integer x between 2 and N−1.

(d) We now want the ability to encrypt or decrypt actual text messages, instead of just positive integers.
In this part, we will give you the code to convert text messages into lists of integers based on ASCII
values (between 0 and 127). These numbers are then combined into blocks, each of size n, using base
256, which you can then apply the RSA function on.
Implement the encrypt and decrypt functions for text messages. Then answer the two subparts
below. For both subparts, we will give you the values of N, e, and d that we want you to work with.

• What’s the secret of your class log-in (cs70-XYZ) using a block size of 4? If your login only has
two letters, treat the last letter (Z) as a whitespace to keep the message length at 8 characters.
Everyone’s answer to this question should be quite different from one another!

EECS 70, Fall 2014, Homework 6 1



We will use cs70-ta with a whitespace character at the end for the solution to this question
(yours should be your own login!).
In this case, the secret turns out to be:
[2447810932550727353987691838700467048278221148712720786064910778322316771088
01348076284846697594898378210293307761190838200410502007192130078728103948274
9456050897021815381244985326603049452469886042947L,
258115255719663783893282172409890154589629290154440185538391585502678043923964
434070030671509281198522997862097622281321254182355544413941037450154255567460
7875713200849790752745944947567980935590234536L]
Quite a huge number, isn’t it?

• What’s the original message of the following secret? You will need to figure out the block size
yourself.
Hint: the length of the original message is 126 (counting all characters, including whitespace). To
figure out the block size, check the numbers from range(1, len(message)) that divides
the message’s length.
The values of N, e, and d, as well as the secret, can be found at http://pastebin.com/
BpesLp6d. They are also embedded inside the code skeleton.
Please report the final answers to both parts by copying and pasting from the notebook. Make sure
you keep the original message for the second subpart intact. Tell us what block size you used as
well (there is only one correct answer).
The original message is "One of the powerful things about mathematics is thatit provides you
with an alternative to your naive intuition of being right", which can be found with a block
size of 18.
(There are other block sizes that "prints" the same message, but the decrypted messages include
garble data. If you check the length of the message to be 126, you should see that the only correct
block size is 18.)
The words "that" and "it" are concatenated on purpose to check if students actually do the question
or get the answer from someone else.
This message is taken from one of Prof. Sahai’s replies on Piazza, post #237.

(e) Recall from lecture that given three data points (xi,yi) where all the xi are distinct, we can find a unique
degree (at most) 2 polynomial p(x) such that p(xi) = yi.
The three ∆i functions can be found as follows.

∆1(x) =
(x− x2)(x− x3)

(x1− x2)(x1− x3)
, (1)

∆2(x) =
(x− x1)(x− x3)

(x2− x1)(x2− x3)
, (2)

∆3(x) =
(x− x1)(x− x2)

(x3− x1)(x3− x2)
(3)

Implement the function interpolate_2D to calculate the polynomial p(x) using Lagrange Inter-
polation.
Test your implementation with the example in Note 7. If your implementation is correct, when you
run the plotting code cell in the skeleton, you should see that the polynomial passes through the three
given points (1,1),(2,2) and (3,4).

EECS 70, Fall 2014, Homework 6 2

http://pastebin.com/BpesLp6d
http://pastebin.com/BpesLp6d


(f) Last week, we learned how to plot a simple curve using Matplotlib. This week, we will learn to plot a
bar chart. By the end of this question, you will plot a bar chart grouping the EECS 70 lecture notes by
their last modified months!
Let’s first look at an example showing the number of exams a student typically has per month during
the Fall semester (this is just a toy dataset!).

The code to make the above plot turns out to be very simple.

Listing 1: Simple Bar Chart Code

width = 1
y = [0, 3, 4, 2, 4]
x = np.arange(8, 13)
plt.bar(x, y, width=width, color="pink")
plt.xticks(x + width*0.5, x) # center the xticks
plt.title(’Number of exams during month’)

We have also introduced four new commands that you will need for this week’s lab:

• np.arange is very similar to Python’s range or xrange. The main difference is that np.arange
returns a vectorized array. For example, scalar addition doesn’t work on a normal Python’s list,
but it will add the same scalar to every element in the vectorized array. Those of you who are
familar with Matlab will find this very familiar.

• plt.bar plots a bar chart, similar to plt.plot which plots a line curve from last week.
• plt.xticks sets the x-limits of the current tick locations and labels.
• plt.title gives the plot a meaningful title.

EECS 70, Fall 2014, Homework 6 3



Believe it or not, you now know more than enough to complete this question! We will give you the
code to recursively fetch the lecture note pdfs on the course website, as well as the Python commands
to extract the last modified months. You can tackle this problem in any creative way you want, but
here’s our recommended approach.

• Group the lecture notes by month. (Hint: use a counter dictionary, where the keys are 1 to 12 (the
month), and the values are the number of notes that were last modified during that month).

• Convert the counter dictionary into two lists and make sure to preserve the order. For example,
there are three lecture notes that were last modified in January, so 1 should be the first value of the
list of months, and 3 should be the first value of the list of counts.

• Plot the list values as a bar chart.

Important: the dataset we’re working with is very small, and it is possible to create the counter
dictionary by inspection. Please do NOT do this. Write the code to convert the dataset into a format
usable for plt.bar.
To help you understand what we expect, the final plot should at least look very similar to this.

Be as creative as you want, and feel free to add axes’ labels, the count above each bar, etc. to your
heart’s content.

Reminder: When you finish, don’t forget to convert the notebook to pdf and merge it with your written
homework. Please also zip the ipynb file and submit it as hw6.zip.

3. The Enemy

The land of the Golden Bears has been conquered by an enemy who shall not be named, and even the bears
can’t bear it. A brave bear decides to gather her fellow bears together in secret to plan an attack against
The Enemy. To announce the meeting info, she leaves messages written in secret codes that only bears can
decipher. You are a young, strong bear, and you definitely want to join the revolution!

Here are the basic decrypting rules you learned from your Freshbear Bootcamp.

• Encryption is done on uppercase letters A to Z. If there are any other characters in the code, remove
them, then add them back at their original positions after decoding the rest.

• To get the original text back, you map the letters A to Z to numbers 0 to 25, apply a corresponding
decoding function D on this array of numbers, and map the output numbers back to alphabets.

You recall the three encoding functions that you were taught. Let a be the array of numbers, and ai be the
ith element in a, 1≤ i≤ n, where n is the number of elements. The functions are,

• Caesar cipher with offset c: ECaesar(ai,c) = (ai + c) mod 26,

EECS 70, Fall 2014, Homework 6 4



• Accumulating cipher with offset c: EAcc(ai,c) = (
i

∑
j=1

a j + c) mod 26,

• RSA: ERSA(ai, p,q,e) = ae
i mod (pq).

Unfortunately, you can only remember two decoding functions out of the three,

• Caesar cipher with offset c: DCaesar(ai,c) = (ai− c) mod 26,

• RSA: DRSA(ai, p,q,e) = ad
i mod (pq), where d is the multiplicative inverse of e modulo (p−1)(q−1),

but that is fine, you can figure out the decoding function for the Accumulating cipher by yourself anyway.
You then revisit how to actually use these decoding functions. To decrypt "VZQL TO" that is encrypted
with Caesar cipher with offset -1:

1. Strip out non-uppercase characters: "VZQL TO"→ "VZQLTO"

2. Convert the string of characters to an array of numbers: "VZQLTO"→ [21,25,16,11,19,14]

3. Apply the decoding function DCaesar to each element:

DCaesar([21,25,16,11,19,14],−1)

= [DCaesar(21,−1),DCaesar(25,−1),DCaesar(16,−1),DCaesar(11,−1),DCaesar(19,−1),DCaesar(14,−1)]

= [(21+1) mod 26,(25+1) mod 26,(16+1) mod 26,(11+1) mod 26,(19+1) mod 26,(14+1) mod 26]

= [22,0,17,12,20,15]

4. Convert the array of numbers back to a string of characters: [22,0,17,12,20,15]→ "WARMUP"

5. Insert the stripped out non-uppercase characters back: "WARMUP"→ "WARM UP"

Now you are ready to go! Find out the name of the enemy, the gathering place, and a secret message from
the encoded messages below. Show your work.

It is useful to create a table of the alphabets and their corresponding numbers for fast lookup.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

(a) The Enemy’s name: "OVTLDVYR", encrypted with a Caesar cipher (c = 7).
The answer is "HOMEWORK".

1. Strip out non-uppercase characters:
"OVTLDVYR"→ "OVTLDVYR"

2. Convert the string of characters to an array of numbers:
"OVTLDVYR"→ [14,21,19,11,3,21,24,17]

3. Apply the decoding function DCaesar to each element:

DCaesar ([14,21,19,11,3,21,24,17],7)

= [14−7,21−7,19−7,11−7,3−7,21−7,24−7,17−7] mod 26

= [7,14,12,4,−4,14,17,10] mod 26

= [7,14,12,4,22,14,17,10]

4. Convert the array of numbers back to a string of characters:
[7,14,12,4,22,14,17,10]→ "HOMEWORK"

EECS 70, Fall 2014, Homework 6 5



5. Insert the stripped out non-uppercase characters back:
"HOMEWORK"→ "HOMEWORK"

Alternative way:
Since Caesar cipher is just shifting alphabets, we can think of two alphabet rings lined up together,
where the top line corresponds to the encrypted output and the bottom line corresponds to the original
alphabet.

Output A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Input A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A Caesar cipher with c = 7 means sliding the bottom ring to the right 7 places cyclically.

Output A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Input T U V W X Y Z A B C D E F G H I J K L M N O P Q R S

From this you can look up the original alphabets (bottom row) directly from the encrypted outputs (top
row). The answer is highlighted in yellow. 2

(b) The gathering place: "OVZ VJIVDDN YMGTZD", encrypted with an Accumulating cipher (c =−5).
The answer is "THE WOZNIAK LOUNGE".

1. Strip out non-uppercase characters:
"OVZ VJIVDDN YMGTZD"→ "OVZVJIVDDNYMGTZD"

2. Convert the string of characters to an array of numbers:
"OVZVJIVDDNYMGTZD"→ [14,21,25,21,9,8,21,3,3,13,24,12,6,19,25,3]

3. Let bi be the ith element in this array of encrypted numbers, 1≤ i≤ n. We want to recover ai back
from bi. From the encoding function,

bi = (
i

∑
j=1

a j + c) mod 26

bi = (ai +
i−1

∑
j=1

a j + c) mod 26

ai = (bi− (
i−1

∑
j=1

a j + c)) mod 26 [Because 0≤ ai,bi < 26]

If i = 1,
i−1
∑
j=1

a j + c = 0+ c = c. Otherwise,
i−1
∑
j=1

a j + c = bi−1. Therefore, the decoding function is,

DAcc(bi) =

{
(bi− c) mod 26 i = 1
(bi−bi−1) mod 26 i > 1

Applying the decoding function DAcc to each element,

DAcc ([14,21,25,21,9,8,21,3,3,13,24,12,6,19,25,3],−5)

= [14+5, 21−14, 25−21, 21−25, 9−21, 8−9, 21−8, 3−21,

3−3, 13−3, 24−13, 12−24, 6−12, 19−6, 25−19, 3−25] mod 26

= [19,7,4,−4,−12,−1,13,−18,0,10,11,−12,−6,13,6,−22] mod 26

= [19,7,4,22,14,25,13,8,0,10,11,14,20,13,6,4]

EECS 70, Fall 2014, Homework 6 6



4. Convert the array of numbers back to a string of characters:
[19,7,4,22,14,25,13,8,0,10,11,14,20,13,6,4]→ "THEWOZNIAKLOUNGE"

5. Insert the stripped out non-uppercase characters back:
"THEWOZNIAKLOUNGE"→ "THE WOZNIAK LOUNGE"

2

(c) The secret message: "QKHH JONK!", encrypted with RSA (p = 2, q = 13, and e = 5).
The answer is "WELL DONE!".

1. Strip out non-uppercase characters:
"QKHH JONK!"→ "QKHHJONK"

2. Convert the string of characters to an array of numbers:
"QKHHJONK"→ [16,10,7,7,9,14,13,10]

3. The decryption key d is the multiplicative inverse of e mod (p−1)(q−1) = 5 mod 12. We find
the multiplicative inverse by running the EGCD algorithm,

12 = 5(2)+2

5 = 2(2)+1

1 = 5−2(2)

1 = 5− (12−5(2))(2)

1 = 5(5)−12(2)

Therefore, d = 5. Applying the decoding function DRSA to each element,

DRSA ([16,10,7,7,9,14,13,10],2,13,5)

= [165,105,75,75,95,145,135,105] mod 26

= [22,4,11,11,3,14,13,4]

4. Convert the array of numbers back to a string of characters:
[22,4,11,11,3,14,13,4]→ "WELLDONE"

5. Insert the stripped out non-uppercase characters back:
"WELLDONE"→ "WELL DONE!"

2

4. Poker mathematics
A pseudo-random number generator is a way of generating a large quantity of random-looking numbers, if
all we have is a little bit of randomness (known as the seed). One simple scheme is the linear congruential
generator, where we pick some modulus m, some constants a,b, and a seed x0, and then generate the
sequence of outputs x1,x2,x3,x4 . . . according to the following equation:

xt+1 = (axt +b) mod m

(Notice that 0≤ xt < m holds for every t.)

You’ve discovered that a popular web site uses a linear congruential generator to generate poker hands for
its players. For instance, it uses x0 to pseudo-randomly pick the first card to go into your hand, x1 to pseudo-
randomly pick the second card to go into your hand, and so on. For extra security, the poker site has kept
the parameters a and b secret, but you do know that the modulus is m = 231−1 (which is prime).

EECS 70, Fall 2014, Homework 6 7



Suppose that you can observe the values x0, x1, x2, x3, and x4 from the information available to you, and that
the values x5, . . . ,x9 will be used to pseudo-randomly pick the cards for the next person’s hand. Describe
how to efficiently predict the values x5, . . . ,x9, given the values known to you.

Answer 1: We know

x1 ≡ ax0 +b (mod m)

x2 ≡ ax1 +b (mod m)

Because we know x0, x1, and x2, this is a system of two equations with two unknowns (namely, a and b). So
we can solve for a and b. More explicitly, by subtracting the first equation from the second, we get

x2− x1 ≡ a(x1− x0) (mod m)

If x0≡ x1 (mod m) then by induction on n we see xn≡ x0 (mod m) for all n which allows us to immediately
calculate x5,x6,x7,x8 and x9. So suppose x0 6≡ x1 (mod m). Then x1−x0 is invertible modulo m (because m
is prime, therefore gcd(x1− x0,m) = 1), and we see

a≡ (x2− x1)(x1− x0)
−1 (mod m)

Once we know a, we can plug in the known value of a into the first equation and solve for b:

b≡ x1−ax0 ≡ x1− x0(x2− x1)(x1− x0)
−1 (mod m)

Since we know a modulo m and b modulo m, we can compute x5,x6,x7,x8 and x9.

Answer 2: Alternatively, we could start by solving for b. Multiplying the first equation by x1, multiplying
the second equation by x0, and subtracting gives x2

1− x2x0 ≡ b(x1− x0) (mod m), and then

b≡ (x2
1− x0x2)(x1− x0)

−1 (mod m)

Now we can plug in the known value of b into the first equation and solve for a, and continue as before.

Note: For both answers, It is important to consider the case when x1 ≡ x0 (mod m). Solutions that didn’t
address that were incomplete, as x1− x0 would not necessarily have an inverse modulo m.

Comment: This homework exercise was loosely modelled after a real-life story, where a group of computer
scientists discovered serious flaws in the pseudorandom number generator used by several real poker sites.
They could have used this to make thousands of dollars off everyone else who played at that site, but rather
than cheat, they instead revealed the flaw to the poker site and the public. For more, see their paper “How
We Learned to Cheat at Online Poker: A Study in Software Security” (http://www.cigital.com/
papers/download/developer_gambling.php).

5. RSA with three primes
Show how you can modify the RSA encryption method to work with three primes instead of two primes
(i.e. N = pqr where p,q,r are all prime), and prove the scheme you come up with works in the sense that
D(E(x))≡ x mod N.

N = pqr where p,q,r are all prime. Then, let e be co-prime with (p− 1)(q− 1)(r− 1). Give the public
key: (N,e) and calculate d = e−1 mod (p−1)(q−1)(r−1). People who wish to send me a secret, x, send
y = xe mod N. I decrypt an incoming message, y, by calculating yd mod N.

EECS 70, Fall 2014, Homework 6 8

http://www.cigital.com/papers/download/developer_gambling.php
http://www.cigital.com/papers/download/developer_gambling.php


Does this work? We prove that xed−x≡ 0 mod N and thus xed ≡ x mod N. To prove that xed−x≡ 0 mod N,
we factor out the x to get
x ·(xed−1−1) = x ·(xk(p−1)(q−1)(r−1)+1−1−1) because ed ≡ 1 mod (p−1)(q−1)(r−1). As a reminder, we
are considering the number: x · (xk(p−1)(q−1)(r−1)−1)
We now argue that this number must be divisible by p, q, and r. Thus it is divisible by N and xed − x ≡
0 mod N.
To prove that it is divisible by p:

• if x is divisible by p, then x · (xk(p−1)(q−1)(r−1)−1) is divisible by p.

• if x is not divisible by p, then that means we can use FLT on the inside to show that (xp−1)k(q−1)(r−1)−
1≡ 1−1≡ 0 mod p. Thus it is divisible by p.

To prove that it is divisible by q:

• if x is divisible by q, then x · (xk(p−1)(q−1)(r−1)−1) is divisible by q.

• if x is not divisible by q, then that means we can use FLT on the inside to show that (xq−1)k(p−1)(r−1)−
1≡ 1−1≡ 0 mod q. Thus it is divisible by q.

To prove that it is divisible by r:

• if x is divisible by r, then x · (xk(p−1)(q−1)(r−1)−1) is divisible by r.

• if x is not divisible by r, then that means we can use FLT on the inside to show that (xr−1)k(p−1)(q−1)−
1≡ 1−1≡ 0 mod r. Thus it is divisible by r.

6. d +2 points vs. a polynomial of degree d

(a) Given 3 points (0,1), (1,1), and (2,3), use Lagrange interpolation to construct the degree-2 polynomial
which goes through these points.
The interpolating polynomial is given by P(x) = y0∆0(x)+ y1∆1(x)+ y2∆2(x) where

∆0(x) =
(x−1)(x−2)
(0−1)(0−2)

=
1
2

x2− 3
2

x+1

∆1(x) =
(x−0)(x−2)
(1−0)(1−2)

=−x2 +2x

∆2(x) =
(x−0)(x−1)
(2−0)(2−1)

=
1
2

x2− 1
2

x

Thus, we have

P(x) = y0∆0(x)+ y1∆1(x)+ y2∆2(x)

= 1
(

1
2

x2− 3
2

x+1
)
+1
(
−x2 +2x

)
+3
(

1
2

x2− 1
2

x
)

= x2− x+1

EECS 70, Fall 2014, Homework 6 9



(b) Given 4 points (0,1), (1,1), (2,3), and (−1,3), does there exist a degree-2 polynomial which goes
through these points? If yes, find the polynomial; if no, explain why none exists.
Yes. The polynomial in the previous question passes through the first three points. Evaluating P(−1) =
3 verifies that it also passes through the fourth point, (−1,3).

(c) Given 4 points (0,1), (1,1), (2,3), and (−1,0), does there exist a degree-2 polynomial which goes
through these points? If yes, find the polynomial; if no, explain why none exists.
No. If there existed a polynomial through those four points, then that same polynomial must necessar-
ily pass through the first three points. However, we know that there is only one degree-2 polynomial
P(x), which we found in the first part, that passes through the first three points. Since P(−1) = 3 6= 0,
it does not pass through the fourth point, (−1,0), and we have a contradiction.

(d) Design a machine (i.e. give the pseudocode for an algorithm) with the following function: given four
points (x1,y1),(x2,y2),(x3,y3),(x4,y4) with all the xi distinct, the machine outputs YES if there exists
a polynomial p(x) of degree at most 2 such that p(xi) = yi for all i; otherwise, it outputs NO.
Following the intuition from the previous part: If a degree-2 polynomial passes through the four points,
it must pass through the first three. Thus, we may use Lagrange interpolation to construct the unique
polynomial, call it p(x) through the first three points. Finally, we simply need to verify if p(x4) = y4.
check_points((x0, y0), (x1, y1), (x2, y2), (x3, y3)):
y = y0*(x3-x1)*(x3-x2)/((x0-x1)*(x0-x2))
+ y1(x3-x0)*(x3-x2)/((x1-x0)*(x1-x2))
+ y2*(x3-x0)*(x3-x1)/((x2-x0)*(x2-x1))
return y == y3

7. Because the Moth just doesn’t cut it

Gandalf the Grey (a good wizard) wanders about on his merry adventures but frequently runs into some
troubles with goblins and orcs along the way. Always being the well-prepared wizard that he is, Gandalf has
enlisted the service of the Great Eagles to fly him out of sticky situations at a moment’s notice. To do this,
he broadcasts a short message detailing his dilemma and a nearby eagle will come to his aid.

While this is all well and good, Saruman the White (an evil wizard) wants in on this eagle concierge service.
The eagles can no longer trust just any distress call they receive! Gandalf needs you (a cryptography master)
to help him devise a simple scheme that will allow the eagles to verify his identity whenever he broadcasts
a message out. Not only that, but the eagles need to know when the message they receive from Gandalf has
been tampered with.

Once you have devised this scheme, Gandalf will tell it to the eagle lord Gwaihir, who will relay it out to
the rest of the world (they are loudmouths so they can’t keep a secret).

To summarize:

(a) Gandalf broadcasts a message m to all of Middle-Earth.

(b) He is able to attach to the message an extra piece of information s that verifies his identity (i.e. cannot
be forged) to whomever receives it.

(c) If the message has been modified in transit, recipients of the modified message should be able to detect
that it is not original.

(d) Everyone in Middle-Earth knows the scheme (i.e. the algorithm itself is not a secret)

Your job in this problem is to devise an algorithm (like RSA) that meets the above criteria. In your answer,
you should formally prove that Gandalf’s messages can be successfully verified. You do not need to formally

EECS 70, Fall 2014, Homework 6 10



prove (though it should still be the case) that it is difficult to forge/tamper with messages, but you should
provide some informal justification.

For those that did not understand the title of the problem: http://lotr.wikia.com/wiki/The_Moth

This type of scheme is known as a digital signature and is closely related to public-key cryptography.

Main Idea: We let Gandalf have a private key that only he knows and release to all the Eagles (and potentially
all of Middle-Earth) a public key. The scheme must be such that it is only possible to generate a valid
signature with the private key (i.e. only Gandalf knows how to sign messages). Secondly, any Eagle with
the message and signature must be able to verify the authenticity using the public key.

Nitty Gritty Details: We generate the public/private key pair in the same fashion as in RSA: find two large
primes p,q and compute N = pq. Next choose e relatively prime to (p− 1)(q− 1) and compute its mul-
tiplicative inverse d modulo (p− 1)(q− 1). In RSA, only the person with the private key knows how to
decrypt the message, while everyone else knows how the encrypt. However, with digital signatures, only
the person with the private key knows how the encrypt the message.

We sign the message with s = md mod N. Anyone receiving the message + signature pair can easily verify
the signature by computing se mod N and seeing that it equals the original m.

An outsider like Saruman cannot forge the signature because he does not know Gandalf’s private key to
encrypt the message. Similarly, if the message is modified in transit, then we have that m 6= se mod N.
Coming up with this scheme is all that is required to get full credit on this problem.

For Intrepid Students Who Like Cryptography (not required to get full credit):
The above scheme isn’t perfect. An outsider can generate a random signature s and compute a message
m = se mod N. The message + signature pair (m,s) will be valid. However, finding a signature s that
will generate a non-gibberish message m is hard. This is like a prank call, annoying but not extremely
dangerous. A second attack works when the attacker knows two or more valid message + signature pairs
(m1,s1),(m2,s2). Then we can construct another message + message pair: m3 = m1m2 and s3 = s1s2. Both
of these can be fixed by requiring Gandalf to prefix all messages, for example with "I am Gandalf".

Finally, Gandalf may want to secure his scheme against "replay attacks", where Saruman copies a valid
message (m,s) from Gandalf, and re-broadcasts it later to the eagles. Such attacks may be prevented in
various ways, for example by requiring all messages to begin with the current time (validated upon receipt).

8. Breaking RSA

(a) Eve is not convinced she needs to factor N = pq in order to break RSA. She argues: "All I need to
know is (p− 1)(q− 1)... then I can find d as the inverse of e mod (p− 1)(q− 1). This should be
easier than factoring N". Prove Eve wrong, by showing that finding (p− 1)(q− 1) is at least as hard
as factoring N (that is, show that if she knows (p− 1)(q− 1), she can easily factor N). Assume Eve
has a friend Wolfram, who can easily return the roots of polynomials over R (this is, in fact, easy).
Let a = (p− 1)(q− 1). If Eve knows a = (p− 1)(q− 1) = pq− (p+ q)+ 1, then she knows p+
q = pq− a+ 1 (note that pq = N is known too). In fact, p and q are the two roots of polynomial
f (x) = x2− (p+q)x+ pq because x2− (p+q)x+ pq = (x− p)(x−q). Since she knows p+q and pq,
she can give the polynomial f (x) to Wolfram to find the two roots of f (x), which are exactly p and q.

(b) When working with RSA, it is not uncommon to use e = 3 in the public key. Suppose that Alice has
sent Bob, Carol, and Dorothy the same message indicating the time she is having her birthday party.
Eve, who is not invited, wants to decrypt the message and show up to the party. Bob, Carol, and

EECS 70, Fall 2014, Homework 6 11



Dorothy have public keys (N1,e1),(N2,e2),(N3,e3) respectively, where e1 = e2 = e3 = 3. Furthermore
assume that N1,N2,N3 are all different. Alice has chosen a number 0 ≤ x < min{N1,N2,N3} which
indicates the time her party starts and has encoded it via the three public keys and sent it to her three
friends. Eve has been able to obtain the three encoded messages. Prove that Eve can figure out x. First
solve the problem when two of N1,N2,N3 have a common factor. Then solve it when no two of them
have a common factor. Again, assume Eve is friends with Wolfram as above.
Eve first tests the GCD of all pairs of N1,N2,N3. Let d1 = gcd(N1,N2), d2 = gcd(N2,N3) and d3 =
gcd(N1,N3). Then there are two cases:

case 1 If one of the d1,d2 and d3 is greater than 1, it must be one of the prime factors p of the two Ni’s.
The other prime factor q can be recovered by q = Ni

p . Therefore we can factorize one of the Ni’s
and once we do that RSA is broken.

case 2 If d1 = d2 = d3 = 1, it means all pairs of the Ni’s are coprime. Let the three encoded messages be
y1,y2,y3. Since the messages are encoded by RSA with public keys (N1,3), (N2,3) and (N3,3),
we have:

x3 ≡ y1 mod N1

x3 ≡ y2 mod N2

x3 ≡ y3 mod N3

Since all pairs of N1,N2,N3 are coprime, By using the Chinese Remainder Theorem, we can solve
the above system of congruence equations. Let the solution be

x3 ≡ x0 mod N1N2N3

with 0≤ x0 < N1N2N3. Since x < N1,N2,N3, x3 < N1N2N3 and thus x3 = x0. We can take the cube
root of x0 and recover the original message x = x1/3

0 . In this problem, the trick is that we were able
to convert a problem of finding cube-roots mod a prime (which is hard) into finding cube-roots in
the integers (which is easy).

9. Coin tosses over text messages

Alice and Bob want to flip a fair coin. However, they are on different continents, so they try to flip a coin
by exchanging text messages. Neither one trusts the other, so they want to make sure that neither Alice nor
Bob can affect the result of the coin toss (being able to affect the result would be obviously problematic if
they are betting on the result of the random bit, for instance). Obviously, one person cannot simply toss the
coin and "report" the results.

Bob proposes the following: "Each of us flips our own coin, with some result in {0,1}. Then we will send
our result to the other, and agree that the final coin should be the XOR of our individual coins"

(a) What is wrong with this method?
In the real world, we cannot guarantee that both messages are received at exactly the same time. But
then the first person to receive a message can set the result of the final coin, by faking his/her individual
coin toss. For example, if Alice sends Bob a 1 first, Bob could force the final coin to be 0 by claiming
he tossed a 1 too, or he could force it to be 1 by claiming he tossed a 0. The core problem is that the
first person to send a message reveals his/her choice, allowing the second person to cheat.

EECS 70, Fall 2014, Homework 6 12



(b) Propose a secure coin-flipping protocol using RSA. You do not need to give a formal proof of security,
but explicitly list all properties you require from RSA, and why you need them (such that, given these
properties, you could carry through a proof of security). Be careful! Remember your protocol should
be secure against cheating at any stage.
To fix the issues with the above protocol, the main idea is to use RSA as a commitment scheme. We
would like to implement the digital analog of the following physical scheme: Alice flips a coin, puts
the result in a locked safe, and sends the safe to Bob. She has "committed" to her result, but Bob cannot
see it. Now Bob flips his coin, and sends his bit in the clear to Alice. Finally, Alice sends Bob the key
to the safe, and they agree to use the XOR of their two coins.
Let consider what properties we need from a "digital safe" to implement the above scheme. Roughly,
the safe above had the following two properties:

1. Hiding Property: The safe hides information about Alice’s coin from Bob.
2. Binding Property: Once Alice has sent the safe ("committed"), she cannot later change the result

of her coin (she is bound to the coin she sent).

Notice the first property ensures Bob can’t cheat, while the second ensures Alice can’t cheat. We will
use RSA as a digital commitment scheme in the following protocol:

1. Alice: Sample large primes p,q such that N = pq > 21000, and publish an RSA public-key (N,e).
Then generate a 1000-bit string r by flipping 1000 coins, and send the encryption y = Ee(r) to
Bob.

2. Bob: Flip a coin to get b ∈ {0,1}, and send b to Alice.
3. Alice: Reveal r, p,q to Bob.
4. Bob: Confirm y = Ee(r), and validate the RSA keys: Test the primality of p,q, confirm N = pq,

and gcd(e,(p−1)(q−1)) = 1.

Then they agree to use the XOR of all bits in r and b as their fair coin. (That is, the final coin is
b⊕

⊕
i ri).

Intuitively, the encryption Ee(r) is like the locked safe, which Alice uses to commit to her coin. Then
Bob chooses his coin, and later Alice reveals the private keys, thus unlocking the safe. There are many
subtleties here, so let us first list the properties we require from our RSA-based commitment scheme:

1. Hiding Property: For any valid public key (N,e): If the 1000-bit string r is chosen randomly,
no computationally-bounded adversary will be able to determine the XOR of bits in r from the
encryption Ee(r) and the public key (N,e). (That is, no adversary will be able to guess the XOR
with probability much more than 1/2 – same as random guessing).

2. Binding Property: For any r, the pair (N,e) together with the encryption Ee(r) is binding: There
does not exist any primes p′,q′ and bit-string r′ such that p′q′ = N, gcd(e,(p′− 1)(q′− 1)) = 1,
and Ee(r) = Ee(r′), but r 6= r′. (In particular, this must hold even if the pair (N,e) is NOT a valid
RSA keypair).

Notice the Hiding Property is slightly weaker than before, since now we only require security against
computationally-bounded adversaries. (In fact, no digital commitment scheme can achieve the full
Hiding and Binding properties as our safe – but we will be happy with the realistic assumption of
computationally-bounded adversaries). Further, we are requiring a stronger property from RSA: not
only should it be hard for an adversary to find r given Ee(r) (the usual security requirement), but it
should be hard to find even the XOR of bits in r. This is a non-trivial strengthening... it is possible to
construct an encryption scheme that reveals the XOR of all bits in the message, but remains hard to
fully invert.

EECS 70, Fall 2014, Homework 6 13



The Binding Property is as strong as before. Our RSA-based commitment scheme is in fact perfectly
binding, due to the uniqueness of prime factorization, and the fact that encryption under a valid public
key is a bijection.
Now we can argue the security of our coin-flipping protocol, using the above properties. First, we
will show that Bob cannot cheat against an honest Alice: If Alice chooses a valid public-key, then
the Hiding Property guarantees that Bob cannot find the XOR of bits in r before he sends his bit b.
Therefore, he learns nothing that could give him an advantage in influencing the final coin. To show
that Alice cannot cheat: By the Binding Property, Alice cannot reveal a different r to Bob in Step 3
than she chose in Step 1. Therefore her contribution to the final coin is determined before receiving any
information from Bob, so she can’t cheat. We have shown that no dishonest player can cheat against
an honest player. Finally, by construction, if at least one honest player abides by the protocol, the final
coin will be fair (unbiased).
Note that if Bob did not confirm Alice’s key pair (N,e) was valid in Step 4, Alice could generate (N,e)
such that the encryption function Ee(x) is no longer a bijection. Then the Binding Property would not
hold, and she may be able to send Bob some r′ 6= r such that E(r′) = E(r). If r and r′ have a different
number of ones, then Alice can cheat (by seeing Bob’s b, and deciding which r,r′ to send).
Common Mistakes:

• If Alice does not send Bob p,q, then Bob cannot confirm Alice’s key pair is valid, and Alice could
cheat as described above. (For example, if Alice sends only a private key d instead of p,q, she
may be able to cheat by choosing an appropriate fake private key, after receiving Bob’s bit b).

• If either party sends a deterministic encryption of their bit, then the Hiding Property will not hold.
For example, if Alice only flips one coin to get a bit k, and sends the encryption Ee(k) to Bob, then
Bob can easily discover her bit by trying to encrypt k = 0 vs k = 1. The correct protocol prevents
this, by allowing the bit 0 to be represented by an exponential number of messages r (all those
with an even number of 1s).

(c) Find at least one flaw in the following alternate protocol:

1. Alice: Publish a public-key (NA,eA).
2. Bob: Publish a public-key (NB,eB).
3. Alice: Generate a 1000-bit string rA by flipping 1000 coins. Send the encryption yA = EeA(rA) to

Bob.
4. Bob: Generate a 1000-bit string rB by flipping 1000 coins. Send the encryption yB = EeB(rB) to

Alice.
5. Alice: Reveal rA to Bob.
6. Bob: Reveal rB to Alice.
7. Alice: Confirm yB = EeB(rB).
8. Bob: Confirm yA = EeA(rA).

Then they agree to use the XOR of all 2000 bits in rA,rB as their fair coin.
The most significant flaw is: If Bob just copies Alice exactly at every step (publishing her public-key
as his public-key, and her encrypted message as his own), then the result of the XOR will always be
zero! (since rA = rB).
Notice that Bob does not need access to any private information: He simply relays every message
Alice sends to him back to her ("What a coincidence! I chose the same thing").
Another flaw: Since Alice doesn’t check Bob’s public key is valid, Bob could also cheat as described
in the previous part.

EECS 70, Fall 2014, Homework 6 14



10. Write your own problem
Write your own problem related to this week’s material and solve it. You may still work in groups to
brainstorm problems, but each student should submit a unique problem. What is the problem? How to
formulate it? How to solve it? What is the solution?

EECS 70, Fall 2014, Homework 6 15


