
EECS 70 Discrete Mathematics and Probability Theory
Fall 2014 Anant Sahai Homework 8
This homework is due October 27, 2014, at 12:00 noon.

1. Section Rollcall!

In your self-grading for this question, give yourself a 10, and write down what you wrote for parts (a) and
(b) below as a comment. You can optionally put the answers in your written homework as well.

(a) What discussion did you attend on Monday last week? If you did not attend section on that day, please
tell us why.

(b) What discussion did you attend on Wednesday last week? If you did not attend section on that day,
please tell us why.

2. Intro to Randomness Lab

We now have all the tools to start diving into the world of randomness. The following questions are designed
to give you some intuition about concepts in probability. Some of the powerful ideas behind the plots will
be further explored later in the course.

Starting from this Virtual Lab, please leave your answers in the empty Markdown cells in the skeleton. The
converted pdf will be your entire answer to this question – there’s no need to individually save figures or
write down anything for the lab.

Please download the IPython starter code from Piazza or the course webpage, and answer the following
questions.

As the problem statement above says, the main purpose of this virtual lab is to help you develop intuition
about concepts in probability. For instance, intuitively, you can tell that if you do a large number of fair coin
tosses, roughly half those tosses will result in a heads outcome, and the other (roughly) half will result in a
tails outcome – since the coin has no inherent preference between heads and tails.

But what does “roughly half” mean? The idea is that, if you conduct an experiment where you toss a large
number of coins many many times, and plot a histogram of the number of heads N that you get in each of
these times, that should give you some intuition. Similarly, what does “large number of coin tosses” mean?
Well, if you plot histograms for different numbers of coin tosses, and shift and scale these histograms in
different ways, you will get some feel for the kinds of numbers that practically qualify as a “large number
of coin tosses” for this purpose.

Another related question is: suppose I toss a coin k times; what are the chances that the fraction of heads
that I get (which is supposed to be roughly half, remember) is less than or equal to half? In fact, we can be
even more general and ask what are the chances that the fraction of heads is less than or equal to q, for every
0≤ q≤ 1? This will be explored more in Homework 9.

Please take a look at the solution and play around with the code, since the next few labs will be very similar
in style to this one.

(a) Last week, we did 1000 coin tosses and plotted a bar chart of how many heads we got v.s. how many
tails. This week, we will do the same thing again 1000 times.

EECS 70, Fall 2014, Homework 8 1

https://daringfireball.net/projects/markdown/basics

Plot a histogram of how many times you got N heads, where 0 ≤ N ≤ 1000. What do you observe
about N and its frequency?
Hint: Implement the function count_heads_in_runs(k, n) in the skeleton, which returns a
list of length n, where each element is the number of heads in k flips. In this case, k = n = 1000.
(In general, always try to parameterize the values instead of hard-coding it. This will make your code
reusable for later parts.)
The results are tightly clustered around N = 500 (highest frequency). As expected, most of the time,
half of the tosses are heads, and the other half are tails.

(b) Let k be a parameter that tells how many coins you toss in one experiment. Do part (a) again for the
following sequence of ks: 2, 5, 10, 100, 1000, 10000. What do you observe as k gets larger?
We observe that at lower values of k, the graph is somewhat random-looking, but it gets smoother and
smoother as k increases.

EECS 70, Fall 2014, Homework 8 2

(c) Notice that the horizontal axis has different scales as k varies. Suppose you wanted to “center” these
histogram plots. How should you change your code for the above part to center the plots around the
origin (0) as k varies?
Plot the resulting histogram of N− f (k) where N is the number of heads in a particular run of fair coin
tosses and f (k) is the shift that you have chosen.
Since the results were clustered around half heads and half tails, we want to shift our plot left by half
the number of flips, so that all the plots are centered at the origin.

EECS 70, Fall 2014, Homework 8 3

(d) Repeat the plots of the previous part except this time, choose a common set of units for the x-axes (so
the x-axes in all plots will have the same range). What range did you choose, and why?
Hint: You can use plt.xlim() to set the x-axis’s range.
We selected the range to be [−200,200]. By inspection, we rarely ever see a deviation more than that,
so all the graphs will fit in this range.

EECS 70, Fall 2014, Homework 8 4

(e) Repeat the plots of the previous part except this time, choose a normalized set of units, corresponding
to the fraction of heads appearing (from 0 to 1).
The left-most point should correspond to the case of tossing all tails. And the right-most point should
correspond to the case of tossing all heads. How is this set of plots different from the previous ones?
In contrast to our previous scale, the histograms are getting tighter and tighter as k increases.

EECS 70, Fall 2014, Homework 8 5

(f) Comment on what you observed in the three sets of plots above. Five or less sentences should be
sufficient.

• Part (c): As the number of tosses increases, the distribution moves closer to a bell-shaped curve
at a coarse scale, but the fine features become quite jagged.

• Part (d): Since we are working on the same scale, the histogram gets wider as the number of tosses
increases, since the number of heads also increases

• Part (e): The curve becomes tighter and tends toward the middle as the number of tosses increases.
This makes sense because as we toss more coins, the chance of getting all heads or all tails
decreases significantly comparing to say, when we toss 2 or 5 coins.

Reminder: When you finish, don’t forget to convert the notebook to pdf and merge it with your written
homework. Please also zip the ipynb file and submit it as hw8.zip.

3. Chinese Remainder Theorem for Polynomials

(a) Prove that the remainder of polynomial p(x) divided by (x− c) is p(c).

EECS 70, Fall 2014, Homework 8 6

By the polynomial division algorithm, we can find some polynomials q(x),r(x) such that p(x) = (x−
c)q(x) + r(x) and degr(x) < deg(x− c) = 1. Therefore r(x) is just a constant (degree 0). Let the
remainder r(x) = e. So we have p(x) = (x− c)q(x)+ e
Now, evaluate both sides at x = c: p(c) = (c− c)q(x)+ e = e.

(b) Consider extending the notion of "modding" to polynomials. Similar to how x mod 5 is the remainder
when x is divided by 5 (or the equivalence class of {x + 5k : k ∈ Z}), let p(x) mod (x−1) be the
remainder when p(x) is divided by (x−1) (or the equivalence class of... what?).
Solve the following system for all polynomials p(x) over GF(5) which satisfy:

p(x)≡ 3 mod (x−1)

p(x)≡ 3 mod (x+2)

p(x)≡ 1 mod (x)

(Hint: Interpret the system using the result of part (a))
By part (a), we can interpret each congruence as specifying the value of p(x) at a particular point. That
is:

p(x)≡ 3 mod (x−1) ⇐⇒ p(1) = 3

p(x)≡ 3 mod (x+2) ⇐⇒ p(−2) = 3

p(x)≡ 1 mod (x) ⇐⇒ p(0) = 1

Now, we can use Lagrange Interpolation to find some polynomial p̃(x) which satisfies the above:

p̃(x)≡ x(x+2)+ x(x−1)(3)+(x−1)(x+2)(−2)−1

≡ x2 + x+1

Notice Lagrange Interpolation only gives us the polynomial p̃(x) of lowest degree which matches the
given points. To find all such polynomials, notice that all polynomials of the form:

p(x) = p̃(x)+q(x)(x−1)(x+2)(x) (1)

also match the given points, for any polynomial q(x).
Further, any polynomial that matches the given points must be of the above form: Say the polynomial
f (x) satisfies f (x) = p̃(x) for x = 1,−2,0 (that is, it matches the given points).
Consider dividing f (x) by (x−1)(x+2)(x), to get

f (x) = r(x)+g(x)(x−1)(x+2)(x)

where degr(x)< 3. Notice f (x) = r(x)∀x ∈ {1,−2,0}. Therefore, r(x) = f (x) = p̃(x)∀x ∈ {1,−2,0}.
But r and p̃ are both polynomials of degree < 3 which agree on 3 points, therefore we must have r = p̃,
and f (x) is of the form in (1).
By analogy to the CRT, notice that the given congruences only specify a unique polynomial p(x)
"mod (x− 1)(x+ 2)(x)". To further help understanding, let us answer the hint posed in the problem
statement: In the "mod 5" universe over integers, a number x mod 5 corresponds to the equivalence
class x+Z= {x+5k : k ∈ Z}. Now in the "mod (x−1)" universe over polynomials with coefficients in
GF(5), a polynomial p(x) corresponds to the equivalence class {p(x)+(x−1)q(x) : q(x)∈GF(5)[x]}.
(That is, q(x) is any polynomial with coefficients in GF(5)).
So for example, just like 3 ≡ 3− (2)(5) mod 5, we have (2x− 1) ≡ (2x− 1)− (2)(x− 1) ≡ 1 mod
(x−1).

EECS 70, Fall 2014, Homework 8 7

(c) From the previous HW, we know gcd((x−1),(x+2)) = 1. Still considering polynomials over GF(5),
does (x+2) have a multiplicative inverse mod (x−1)?
Yes, the multiplicative inverse is 2, because:

(x+2)(2)≡ 2x−1≡ 1+2(x−1)≡ 1 mod (x−1)

We could compute this by running egcd(x+2,x−1), to find 3 = (1)(x+2)+ (−1)(x−1). Then we
multiply both sides by 3−1 = 2 (since coefficients are from GF(5)), to find 1 = (2)(x+2)+(−2)(x−
1).
Alternatively, we could notice: x+2 ≡ x+2− (x−1) ≡ 3 mod (x−1) So (x+2)−1 ≡ 3−1 = 2 mod
(x−1). This is the same as using the result of part (a), but written more explicitly.
It may seem like we are simultaneously working "mod 5" and "mod (x− 1)". This is due to our
notation. We are considering polynomials with coefficients in GF(5), a field of 5 elements. Instead of
arbitrarily calling these elements {0,1,a,b,c}, and remembering rules like a∗a = c and a+b = 0, we
suggestively denote elements by integers (instead of "a", we write "2" or "7" or "-3", etc). We know
that GF(5) can be thought of as equivalence classes of integers mod 5, which justifies this notation.

(d) Show how to solve the system of congruences in part (b) using the explicit form of the Chinese Re-
mainder Theorem (by analogy to the usual CRT). Comment on the similarities/differences to how you
solved (b) previously.
By analogy to the usual CRT, we can construct:

p(x)≡ (3)x(x+2)[x(x+2)]−1
x−1

+(3)x(x−1)[x(x−1)]−1
x+2

+(1)(x−1)(x+2)[(x−1)(x+2)]−1
x

Where the notation [f (x)]−1
x−c means "inverse of f (x) mod (x− c)". Finally, notice that by part (a):

f (x)≡ f (c) mod (x− c), so
[f (x)]−1

x−c = f (c)−1

(If you didn’t notice this, you could still write, for example: [x(x+ 2)]−1
x−1 as [x]−1

x−1[x+ 2]−1
x−1, then

compute each factor individually as in part (b)).
Using this simplification, we find the CRT gives us exactly the same form as Lagrange Interpola-
tion! That is, the delta polynomials are exactly the same, and even constructed in exactly the same
way.
In this case:

p(x)≡ (3)x(x+2)(3)−1

+(3)x(x−1)(1)−1

+(x−1)(x+2)(−2)−1

≡ x2 + x+1

(e) (optional) Now that we can take the inverse of certain polynomials in the "mod polynomial" universe
(as in part (c)), let’s see how far this takes us (unrelated to the CRT). Consider the set of all polynomials
over GF(3), modulo (x2 + 1). How many distinct elements are there? How many of them have
multiplicative inverses? Does this construction form a field?

EECS 70, Fall 2014, Homework 8 8

There are 9 elements: S = {ax+b : a,b ∈ GF(3)}. (Notice we can define addition and multiplication
over this set in the natural way.)
All non-zero elements have multiplicative inverses. This could be confirmed manually, or by noticing
that (x2 + 1) has no roots in GF(3), so it cannot be factored further. Therefore for any two non-zero
elements u,v ∈ S, we must have uv 6= 0. Since S is finite and closed under multiplication, we may
conclude that every non-zero element u has an inverse: uS must be a permutation of S, because if
∃a 6= b such that ua = ub, then u(a−b) = 0 but u 6= 0,(a−b) 6= 0, contradiction. (If you look closely,
this is similar to how we proved the FLT).
For example, (2x+1)−1 = 2x+2, because (2x+1)(2x+2) = 4x2+6x+2≡ x2+2 = 1+(x2+1)≡ 1.
Similarly, x−1 =−x, because x(−x) =−x2 ≡−x2 +(x2 +1) = 1.
The other field axioms follow naturally by construction (we can add, subtract, multiply, addition com-
mutes, and multiplication distributes). Therefore we have a finite-field with 9 elements! This field has
different structure than fields we’ve encountered before... for example, we cannot get all elements by
simply adding 1s: 0,1,1+1,1+1+1, etc. However, we can get all non-zero elements by considering
powers of (x+1): 1,(x+1),2x,2x+1,2,2x+2,x,x+2. In fact, any finite field with 9 elements must
behave exactly like this one, so we are justified in calling it GF(9).
Polynomials have a very deep algebraic structure, as you’ve seen here. Those interested are encouraged
to take abstract algebra, Math (H)113.

4. Guardians of the Galaxy Rendez-Vous
The Guardians of the Galaxy are back, and this time they need your help! The band has gone their separate
ways, and Peter Quill needs to organize an urgent meeting to alert his friends about the latest threat to the
galaxy. Unfortunately, communication across the galaxy still isn’t perfect – stray radiation can erase parts
of messages!

Rocket the Raccoon has told Peter about a strategy to get his message across:

1. There are only 105 possible safe planets Peter would use to meet his friends, and he labels them 0 to
104. His friends also know which planet each number ID refers to.

2. He takes the unique ID and finds the remainder mod 3, 5, 7, 11 and 13.

3. This is the message he sends across, as a five-number tuple.

4. The receiver makes clever use of the CRT to find the unique message.

For example, if Peter wants to go planet 51, he sends the message (0,1,2,7,12). If the first symbol is erased
in transit, the received message will be (X ,1,2,7,12).

(a) Gamora gets the message (X ,4,X ,6,3)! What planet does she thinks Peter is at?
Gamora gets the message (X, 4, X, 6, 3), which corresponds to the following table:

X 4 X 6 3
3 5 7 11 13

She can then set up the following congruences:

x≡ 4 mod 5

x≡ 6 mod 11

x≡ 3 mod 13

EECS 70, Fall 2014, Homework 8 9

Through a straightforward application of the Chinese Remainder Theorem, we find:

x≡ (4)(143)[143−1]5 +(6)(65)[65−1]11 +(3)(55)[55−1]13 mod (5∗11∗13)

≡ (4)(143)[3−1]5 +(6)(65)[10−1]11 +(3)(55)[3−1]13 mod 715

≡ 4(143)(2)+(6)(65)(10)+(3)(55)(9) mod 715

≡ 6529 mod 715

≡ 94

So Gamora thinks Peter wants to rendez-vous at the planet 94 .

(b) Although Peter wants to use this scheme, he’s still a little paranoid everyone will make the rendez-
vous. Describe the "clever use" of the CRT more precisely. How many radiation-erasures can this
scheme tolerate, in the worst case? Prove it.
Assume the received message has ≤ 2 erasures.
Select some three pairs of received (prime, residue) as (p1,r1),(p2,r2),(p3,r3). For example, for part
(a), Gamora would have chosen (5,4),(11,6),(13,3). The decoding algorithm is:

1. Use the CRT to find the message x with residue ri (mod pi) for i = 1,2,3. This x will be unique
mod p1 p2 p3.

2. Since the original message x was chosen with 0 ≤ x < 105 = (3)(5)(7) ≤ p1 p2 p3, knowing the
message uniquely mod p1 p2 p3 is sufficient to decode the exact message. Notice in this step, it
was important the message was chosen to be less than the product of the three smallest primes –
so any other set of 3 primes (corresponding to the non-erased locations) has a larger product.

So we can correctly decode with ≤ 2 erasures. Assume for contradiction that this CRT code can
tolerate any 3 erasures. Then we could erase the 3 largest primes, and only receive the message x mod
3 and mod 5. This only uniquely identifies the message mod 15, not mod 105, so we cannot decode
uniquely. (In particular, x = 0 and x = 15 both have the same residues mod 3 and mod 5).
Notice that if the first three locations were erased, we would in fact have enough information to
uniquely decode, since 11∗13≥ 105. But we are considering the worst-case pattern of erasures.

(c) Even with Ronan gone, Thanos and the Ravagers are still out to get Peter! They will do their best to
corrupt his message. Groot gets the message (2,1,2,2,10), which may have at most one corruption.
Can he/it determine where Peter wants to meet?
We are given that at most one location was corrupted. So we try the brute-force decoding strategy:

1. Assume location 1 was corrupted. Treat it as an erasure, and decode the remaining message to
some x′.

2. Re-encode x′, and see if the encoding matches differs from the received message in at most 1
location.

3. If not, repeat for locations 2,3,4,5.

We find that only one message x′ = 101 matches the received codeword in enough locations. This
encodes as 101 7→ (2,1,3,2,10). So Peter wants to meet at Planet 101.
In fact, for such a small message-space, we can execute an even bruter-force decoding strategy (with
help from a computer): Simply try all possible messages x ∈ 0...105, and see which one differs from
the received codeword in at most 1 location.
But how do we know we will decode correctly – that is, what if there are two possible codewords which
both differ in at most 1 location from the received message? This is impossible: Fix some received-
tuple Z. For contradiction, assume there were some two messages, x 6= y such that dH(E(x),Z) ≤ 1

EECS 70, Fall 2014, Homework 8 10

and dH(E(y),Z)≤ 1. (Where dH is the hamming-distance). But then dH(E(x),E(y))≤ 2 (that is, they
differ in at most two locations). Now consider sending the message x, encoded as E(x), then erasing
the locations of these two differences. Then a receiver can’t determine if we encoded the message x or
y! But we have already proven that this code can tolerate 2 erasures, contradiction.
Note: In general, this reflects how any 2t-erasure-correcting code can be used as a t-error-correcting
code.

5. Magic!

In this problem we will investigate what happens when in error-correcting codes there are fewer errors than
the decoding algorithm is able to handle. For the entire problem we are working in GF(7).

Assume that we wish to transfer a message of length 2, which we denote by (m1,m2). Each mi is a member
of GF(7). We also wish to be able to correct up to k = 1 error. Using the error-correcting codes we learned
in class, we have to first find a polynomial P(x) of degree at most 1 such that P(1) = m1 and P(2) = m2.
Then we have to extend the message we send by 2k symbols, i.e., we will send (P(1),P(2),P(3),P(4)) to
the recipient.

(a) Consider an example where (m1,m2) = (4,2). What are the four symbols that are transmitted?
We need P(1) = 4 and P(2) = 2. Suppose the polynomial is of the form ax+ b. Then, solving the
linear equations

a+b = 4

2a+b = 2,

leads to P(x) = 5x+6. Therefore, the message will be (P(1),P(2),P(3),P(4)) = (4,2,0,5). 2

(b) Now let’s work with a different message of length 2. Assume that you have received these numbers:
(5,0,2,4), i.e., if there were no errors then we would have P(1) = 5,P(2) = 0,P(3) = 2,P(4) = 4.
Write down the linear equations that help decode error-correcting codes: Q(i) = P(i)E(i) = riE(i), for
1≤ i≤ 4.
We are looking for

P(x) = ax+b,

E(x) = x+ e0,

Q(x) = q2x2 +q1x+q0 = P(x)E(x) = rxE(x).

The four equations are

Q(1) = q2 +q1 +q0−5e0 = 5

= q2 +q1 +q0 +2e0 = 5 (2)

Q(2) = 4q2 +2q1 +q0 = 0 (3)

Q(3) = 9q2 +3q1 +q0−2e0 = 6

= 2q2 +3q1 +q0 +5e0 = 6 (4)

Q(4) = 16q2 +4q1 +q0−4e0 = 16

= 2q2 +4q1 +q0 +3e0 = 2 (5)

2

EECS 70, Fall 2014, Homework 8 11

(c) Try to solve the linear equations you got in the previous section. You should observe that there are
multiple solutions to these equations. Pick two different solutions and for each one write down the
error-locating polynomial E(x) and the polynomial Q(x). In each of the two solutions, divide Q(x) by
E(x) to get the original polynomial. Do you get the same polynomial in both cases?
One common mistake we found in the HW Party is solving the equations with solvers for real numbers.
Equations that are linearly independent in the reals can be linearly dependent in modular arithmetic
and vice versa. This particular system of equations happens to be just such a case. Although it has a
unique solution over the reals, it does not in mod 7.

We will solve the system using Gaussian Elimination.
1 1 1 2 5
4 2 1 0 0
2 3 1 5 6
2 4 1 3 2

→

1 1 1 2 5
0 5 4 6 1
0 1 6 1 3
0 2 6 6 6

R1
R2−4R1
R3−2R1
R4−2R1

→

1 0 3 5 2
0 1 5 4 3
0 0 1 4 0
0 0 3 5 0

R1−3R2
3R2
R3−3R2
R4−2×3R2

→

1 0 0 0 2
0 1 0 5 3
0 0 1 4 0
0 0 0 0 0

R1−3R3
R2−5R3
R3
R4−3R3

Observe that we have lost one equation along the way, meaning the system has multiple solutions.
Writing the matrix back to equations,

q2 = 2 (6)

q1 +5e0 = 3 (7)

q0 +4e0 = 0 (8)

Picking e0 = 1 gives us,

E(x) = x+1

Q(x) = 2x2 +5x+3

P(x) =
Q(x)
E(x)

= 2x+3

Picking e0 =−1 gives us,

E(x) = x−1

Q(x) = 2x2 + x+4

P(x) =
Q(x)
E(x)

= 2x+3

Both give the same polynomial P(x) with P(1) = 5,P(2) = 0,P(3) = 2,P(4) = 4. 2

(d) Do both E(x)’s have the same root? What does that tell you about the position of error in the transmitted
message?

EECS 70, Fall 2014, Homework 8 12

No, they don’t have a common root. In fact, anything can be the root because we get to pick e0. This
means the error in the transmitted message can be anywhere, but this contradicts the fact that the error
can be at only one place, so there must be no error.
If you’re not convinced, think of the meaning behind the Berlekamp-Welch algorithm. We are finding
k points that, when ignored, allow us to link through the rest n+ k points with a polynomial of degree
just n− 1, which only happens when that polynomial is P(x). Back to our example, the fact that the
root of E(x) can be anywhere means any subset of 3 received packets are correct, implying that all 4
points are correct. 2

(e) Consider accounting for k = 2 general errors instead of k = 1. If we want to send a message of length
2, we have to send 2+2k = 6 packets. Suppose only one packet is corrupted, then you will see multiple
possible Q(x)’s and E(x)’s again. What do you expect in common between these E(x)’s? Give a brief
justification. (Hint: Think about the positions of errors they point to again.)
They share one common root which is the position of that one error. The other root is arbitrary.

Q(x) = E(x)P(x) = (x−anything)(x− common_root)P(x)

2

6. Po(l)lynomial Pranks
Alex and Barb talk to each other via Polly. Knowing her tendency to prank, they use polynomials to ensure
they can recover their original messages in case she decides to erase (i.e., replace with a blank) or change
some of the packets.

Throughout this question, let xi and yi denote the ith x and y values the sender sends, and x′i and y′i denote the
ith x and y values the receiver receives. We use one-based indexing. Although we only show the solutions
for interpolation-encoding Reed-Solomon scheme, similar techniques can be applied to coefficient-encoding
codewords as well.

(a) Never the one to run out of ideas, Polly adds an integer offset c to the x values of the packets instead,
i.e., each packet (x,y) becomes (x+ c,y). Will Alex and Barb be able to get their original messages
back without knowing c beforehand? Do they need to modify their scheme to handle this prank? If so,
describe the method briefly.
They can get their original message back without having to change anything.
When c is added, each packet (xi,yi) becomes (xi+c,yi). The yi values are unaffected, and the ordering
of the packets doesn’t change, i.e., if xi < x j, then x′i = xi + c < x j + c = x′j. The receiver can just read
the received values as normal. 2

(b) Realizing what you just showed, Polly adds the integer offset c to the y values of the packets instead,
i.e., each packet (x,y) becomes (x,y+ c). Can Alex and Barb get their original messages back using
their current scheme? If not, propose a modified scheme that will work.
No, they can’t. There are at least a few possible schemes.
Method 1: Send one additional packet at the end with y = 0 to figure out the offset c to subtract back.

• Sender: Interpolate n data points to find P(x). Send (x1,P(x1)),(x2,P(x2)), . . . ,(xn,P(xn)),(xn+1,0).
• Receiver: Let c = y′n+1. Get y′1− c, y′2− c, ..., y′n− c as the original message.

Method 2: Shift P(x)’s degree by one place and let Polly’s offset occupy the coefficient of x0.

• Sender: Interpolate n data points to find P(x). Create a degree-n polynomial P̂(x) = xP(x) to
let c occupy the coefficient of x0. Send n+1 packets, (x1, P̂(x1)),(x2, P̂(x2)), . . . ,(xn, P̂(xn)), and
(xn+1, P̂(xn+1)).

EECS 70, Fall 2014, Homework 8 13

• Receiver: Interpolate the points to find P̂(x) = bnxn + . . .+b1x+b0. Let c = b0 and recover the
original message (y′1− c)(x′1)

−1, (y′2− c)(x′2)
−1, ..., (y′n− c)(x′n)

−1.

Both of the schemes need 1 additional packet = (n+1) minimum packets in total.
Method 3: (Student’s solution from HW Party) Swap x’s and y’s so the noise perturbs x values instead.

• Sender: Interpolate n data points to find P(x). Send (P(x1),x1),(P(x2),x2), . . . ,(P(xn),xn).
• Receiver: Get the original message x′1,x

′
2, . . . ,x

′
n.

This method only needs n packets. It is worth noting that this only works because the offset is constant
and doesn’t affect the packet ordering. 2

(c) Polly changes her mind again. Adding a constant offset c is too simple. She now picks a random
po(l)lynomial N(x) of degree ≤ d and adds it to the y values instead, i.e., each packet (x,y) becomes
(x,y+N(x)). Note that N(x) can have higher degree than P(x). Suppose Alex and Barb know d,
provide a scheme for them to reliably communicate using the minimum number of packets. You only
need to give a brief justification.
This is an extension of the solutions for part (b).
Method 1: Send d +1 additional packets at the end with y = 0 to figure out N(x) to subtract back.

• Sender: Interpolate n data points to find P(x).
Send (x1,P(x1)),(x2,P(x2)), . . . ,(xn,P(xn)),(xn+1,0),(xn+2,0), . . . ,(xn+d+1,0).

• Receiver: Interpolate for N(x) from points (x′n+1,y
′
n+1),(x

′
n+2,y

′
n+2), . . . ,(x

′
n+d+1,y

′
n+d+1).

Recover the original message y′1−N(x′1),y
′
2−N(x′2), . . . ,y

′
n−N(x′n).

Method 2: Shift P(x)’s degree by d +1 places.

• Sender: Interpolate n data points to find P(x). Create a degree-n+d polynomial P̂(x) = xd+1P(x)
to let N(x) occupy the coefficients of xd to x0.
Send n+d +1 packets, (x1, P̂(x1)),(x2, P̂(x2)), . . . ,(xn+d , P̂(xn+d)), and (xn+d+1, P̂(xn+d+1)).

• Receiver: Interpolate the points to find P̂(x) = bn+dxn+d + . . .+b1x+b0. Let N(x) = bdxd + . . .+
b1x+b0 and recover the original message yi = (y′i−N(x′i))(x

′d+1
i)−1.

Note that Method 3 from part (b) doesn’t work because it can give wrong or undefined ordering of the
message. For example, let P(x) = 2x, N(x) = −x, and n = 3. Let the original packets from sender
before the x-y swap be (1,2),(2,4),(3,6). The packets that arrive Polly will be (2,1),(4,2),(6,3).
Polly then delivers (2,1 + N(2)),(4,2 + N(4)),(6,3 + N(6)) = (2,−1),(4,−2),(6,−3), effectively
reversing the order of the message. The receiver swaps x and y back, sorts by ascending x values and
gets 6, 4, 2 as the message instead of 2, 4, 6.

Next, we show that n+d +1 is indeed the minimum number of packets. Let

P(x) = an−1xn−1 +an−2xn−2 + . . .+a1x+a0, (9)

N(x) = bdxd +bd−1xd−1 + . . .+b1x+b0. (10)

Let Q(x) denote the received polynomial, i.e., Q(x) = P(x)+N(x),

Q(x) = an−1xn−1 +an−2xn−2 + . . .+a1x+a0 +bdxd +bd−1xd−1 + . . .+b1x+b0. (11)

Q(x) consists of n+ d + 1 unknown variables, a0,a1, . . . ,an−1, and b0,b1, . . . ,bd . Although we only
need to know either a0,a1, . . . ,an−1 or b0,b1, . . . ,bd , we need at least n+ d + 1 pairs of (x,Q(x)) to
generate n+d+1 equations to solve the system. Hence, the minimum number of packets is n+d+1.

EECS 70, Fall 2014, Homework 8 14

Then what about just sending d +1 extra packets, constructing n+d +1 equations and solving them?
There will be cases where the n+ d + 1 packets offer redundant data, leading to degenerated sys-
tem of equations, and we won’t be able to figure out the unique original message. For example,
consider N(x) = −P(x), the received packets will be (x1,P(x1) + N(x1)), . . . ,(xn+d+1,P(xn+d+1) +
N(xn+d+1)) = (x1,0), . . . ,(xn+d+1,0), which are not useful at all. 2

(d) Extend the scheme in part (c) to account for an additional ke erasure errors. Does your scheme still
use the minimum number of packets? If not, come up with a new scheme that does. You should give a
brief justification.
From part (c), if we use Method 1 , we would need 2ke extra packets, ke for N(x) and ke for the actual
message. But we know from the lecture we can guard against ke erasures using just ke extra packets.
Can we send less? Yes, by merging all the information into one polynomial. We can do that for Method
1 with a slight modification (or just a different interpretation of the packets, really.) Method 2 works
right away.
Method 1: (Student’s solution from HW Party) Add d +1 data points with y = 0.

• Sender: Add d +1 data points, (xn+1,0), . . . ,(xn+d+1+ke ,0). Interpolate to find P(x) of degree up
to n+d that passes through all n+d+1 data points. Use P(x) to generate and send n+d+1+ke

packets, (x1,P(x1)),(x2,P(x2)), . . . ,(xn,P(xn)),(xn+1,0),(xn+2,0), . . . ,(xn+d+1+ke ,0).
• Receiver: The received packets will be of form (x′i,P(x

′
i)+N(x′i)). Let R(x) = P(x)+N(x). Since

R(x) can be of at most degree n+ d, we can interpolate the received n+ d + 1 packets to find
R(x). Then we can generate all missing packets, then use (x′n+1,y

′
n+1), . . . ,(x

′
n+d+1,y

′
n+d+1) =

(x′n+1,N(x′n+1)), . . . ,(x
′
n+d+1,N(x′n+d+1)) to generate N(x). Finally, recover the original message

y′1−N(x′1), . . . ,y
′
n−N(x′n).

Method 2: Shift P(x)’s degree by d +1 places.

• Sender: Interpolate n data points to find P(x). Create a degree-n+d polynomial P̂(x) = xd+1P(x)
to let N(x) occupy the coefficients of xd to x0.
Send n+d+1+ke packets, (x1, P̂(x1)), . . . ,(xn+d+ke , P̂(xn+d+ke)), and (xn+d+ke+1, P̂(xn+d+ke+1)).

• Receiver: Interpolate the n+d +1 points received to find P̂(x) = bn+dxn+d + . . .+b1x+b0. Let
N(x) = bdxd + . . .+b1x+b0 and recover the original message yi = (y′i−N(x′i))(x

′d+1
i)−1.

2

(e) Modify the scheme in part (d) to account for an additional kg general errors instead of erasure errors.
Again, from the lecture, we should need 2kg extra packets to recover from general errors. Fortunately,
both methods in part (d) work. We can just send n+d +1+2kg packets instead of n+d +1+ ke and
then run Berlekamp-Welch algorithm to detect the error and recover the right polynomial. 2

7. Error-Detecting Codes

In the realm of error-correcting codes, we usually want to recover the original message if we detect any
errors, and we want to provide a guarantee of being able to do this even if there are k general errors. Suppose
that instead we are satisfied with detecting whether there is any error at all and do not care about the original
message if we detect any errors. In class you saw that for recovering from at most k general errors when
transmitting a message of length n you need to extend your message by 2k symbols and send a message of
length n+ 2k. But since we don’t require recovering the original message, it is conceivable that we might
need less symbols.

Formally, suppose that we have a message consisting of n symbols that we want to transmit. We want to be
able to detect whether there is any error if we are guaranteed that there can be at most k general errors. That

EECS 70, Fall 2014, Homework 8 15

is, your receiver should be able to say either ’this message is completely correct’ and decode it, or say ’this
message has at least one error’ and throw it away. How should we extend our message (i.e. by how many
symbols should we extend, and how should we get those symbols) in order to be able to detect whether our
message has been corrupted on its way? You may assume that we work in GF(p) for a very large prime
number p. Show that your scheme works, and that adding any lesser number of symbols is not good enough.

We claim that we need to extend our message by k symbols in order to be able to detect up to k errors.
Suppose that the message is extended to m1,m2, . . . ,mk,mk+1, . . . ,mk+n. The encoding procedure is exactly
the same as what we saw in the lecture. We do the following detection algorithm. Find the unique polynomial
of degree n− 1 that passes through points (1,m1) up to (n,mn). Call this polynomial to P(x). If all of the
points corresponding to the extended symbols (n+1,mn+1) up to (n+ k,mn+k) lie on P(x) then we declare
that there are no errors. Otherwise the message is corrupted.

Now we argue that why the above extended message and the detection algorithm work:
We know that there are at most k errors. In other words, at least n of the points are still correct. We know
that n points are enough to fully determine a degree at most n−1 polynomial, and since these points are all
still “correct”, the only polynomial of degree n− 1 that goes through them is the original polynomial that
interpolated the n original symbols. So if any of the other points have been changed, and therefore do not
lie on the original polynomial, then the original polynomial would not match these points, so there would
be no degree n−1 polynomial that matches all the points sent. Otherwise, if all the points are unchanged, it
is clear that by our construction that we will get the original polynomial going through the points.

Now we prove that if we extend the message by any number of symbols less than k, then the adversary can
perturb the symbols such that the detector does not find it out. Suppose that the message is extended by k−1
symbols, mn+1 up to mn+k−1. Then the adversary can change symbol mn to m̃n, and find the polynomial that
passes through the points (1,m1) up to (n, m̃n). Let this polynomial be P̃(x). Then the adversary can change
the extended symbols such that all of the points (n+ 1, m̃n+1) up to (n+ k− 1, m̃n+k−1) lie on P̃(x). (Note
that the adversary can perturb up to k symbols) Therefore, the detector cannot detect that the message is
corrupted. This shows that we need at least k extra symbols to detect k errors.

8. Orpheus’ Adventures in the Halls of Time

You’re designing a new role-playing game for a mathematically themed production house. Your eccentric
colleague comes to you with an idea for a key scene and he wants you to think about it.

The backstory is that the mortal Orpheus wants to gain knowledge of the dates of certain key events in the
year to come: call these the prophecies of interest. He has heard that in the Halls of Time, these things are
already known so he quests through the underworld until he comes upon them.

In the Halls of Time, he encounters the Guardians. They have access to the knowledge of the Fates.

The game behaves as follows. There are 12 guardians (corresponding to the 12 constellations of the Zodiac
or the 12 months) and each knows all the prophecies, but they have a peculiar property. Half of them are
honest and answer questions posed to them exactly. One quarter of them consider mortals to be beneath
them and will simply say “Begone mortal!” And one quarter despise mortals and will answer maliciously.

But mortals do not know the secret forms of the guardians and so Orpheus doesn’t know who he is talking
to.

On this setting, Orpheus can only ask questions (he can invoke arithmetic operations in GF(367) if he wants)
whose answer is a number from {0,1,2, . . . ,366}.
(The prophecies he wants are answers to questions like: “When will my child be born?” The answers can
be viewed as numbers: 1, . . . , 365 for the days in the coming year. 0 for the past. 366 to represent the future
beyond this coming year. Fortunately for Orpheus, 367 happens to be prime.)

EECS 70, Fall 2014, Homework 8 16

All guardians are good at math and can answer any question as long as the answer is from 0 to 366 (not
limited to just a simple answer to a prophecy). Orpheus can only ask any individual guardian one question.
After that, that particular guardian will magically leave the room. He gets to question all 12 guardians.

How many prophecies can Orpheus reliably extract from the 12 guardians? How can he do it? (Be
explicit) Why will this work?

Orpheus can reliably extract 3 prophecies.
Suppose the answers of the three prophecies Orpheus is interested are a1,a2 and a3 (note that Orpheus does
not know the answers in advance). Orpheus can ask the Guardians by either ways as follows:

• Method 1: Orpheus can ask the i-th Guardian to form a polynomial of degree≤ 2 over GF(367) with
a1,a2,a3 as coefficients, i.e. P(x) = a3x2 +a2x+a1, and to tell him what is P(i).

• Method 2: Orpheus can ask the i-th Guardian to form a polynomial P(x) of degree≤ 2 over GF(367)
such that P(1) = a1,P(2) = a2 and P(3) = a3, and to tell him what is P(i).

Let ri be the i-th answer Orpheus got from the Guardians. He knows that among all ri’s, there are only 9 valid
answers because 3 of the Guardians will always answer ‘Begone mortal’. Among the 9 valid answers, there
are 3 malicious answers. Collecting all the answers ri’s from every Guardian, he can recover the polynomial
P(x) by ignoring the 3 missing answers and using Berlekamp-Welch algorithm with the remaining 9 answers
(3 of them may be wrong).

If Orpheus uses method 1, he can find out a1,a2,a3 by just looking at the coefficients of P(x).
If Orpheus uses method 2, he can find out a1,a2,a3 by a1 = P(1),a2 = P(2),a3 = P(3).

We can analogize the 12 answers as a message of 12 packets which subjects to ke = 3 erasure errors and kg =
3 general errors, so the above framework can recover a polynomial of degree at most n = 12−ke−2kg = 3.

9. Reed-Solomon and Reliable Computation
In this question, we will see how error correction can help with faulty computations. Let us first establish a
useful fact:

(a) Suppose we are using a Reed-Solomon code over GF(p) guarding for k transmission errors. Let a =
(a1, . . . ,an) and b = (b1, . . . ,bn) be two n-packet messages. Show that the Reed-Solomon codeword
for message a+b = (a1 +b1, . . . ,an +bn) is the same as the sum of the Reed-Solomon codewords of
a and b. In other words, the RS codeword of the element-wise sum is the element-wise sum of the RS
codewords.
Let A, B and C be the message polynomials associated with messages a,b and a+b respectively. By
definition, A,B and C are of degree at most n−1 and are such that A(i) = ai, B(i) = bi and C(i) = ai+bi

for i in range 1, . . . ,n. We have to show that C(i) = A(i)+B(i) for all i in range 1, . . . ,n+2k.
First, we have C(i) = ai+bi =A(i)+B(i) for 1≤ i≤ n. What about the remaining 2k points? A+B−C
is a polynomial of degree at most n−1 with n distinct roots 1, . . . ,n. Hence A+B−C must be the zero
polynomial (A+B−C = 0) which we can rewrite as C = A+B, thus finishing the proof.

Suppose you have invented a machine for doing additions extremely fast. Your invention takes a list of pairs
of numbers as input and returns the list of the pairs sums. Although the machine is blazing fast, it is at the
same time prone to mistakes. Luckily, you can bound the number of mistakes: over all of the n outputs
returned, you know that at most max(1,bn/4c) outputs have an error. For example, if we feed the machine
((2,3),(4,3),(0,7),(4,2)) we might get back output (5,7,4,6), where 4 6= 0+7 is a mistake.

You want to sell your invention, but none of your potential clients is interested in an error-prone device like
this. They feel the speed benefit does not compensate for the unreliability of the results.

EECS 70, Fall 2014, Homework 8 17

(b) Show that you can augment your machine with a Reed-Solomon encoding and decoding scheme such
that no wrong outputs are ever returned. Your clients can use the machine the exact same way as
before, but they no longer experience erroneous results.
Let n the number of input pairs (a1,b1), . . . ,(an,bn). The idea is to first encode a = (a1, . . . ,an) into
a′ and b = (b1, . . . ,bn) into b′ using an (n,2k)-Reed-Solomon code, feed the original machine with the
encoded pairs (a′1,b

′
1), . . . ,(a

′
n+2k,b

′
n+2k) to get the faulty summations, and then decode the obtained

message and return the error-free solution. We are indeed guaranteed to get back the actual summations
(a1 +b1, . . . ,an +bn) by part (a) which shows that the sum of the Reed-Solomon codes corresponds to
the Reed-Solomon code of the sums. Now, the only question is to find the number of errors k we need
to account for in the Reed-Solomon scheme.
We have to be careful about the max condition in the error bound. There is at least 1 error independently
of the input size n, which means we need k ≥ 1. Furthermore, when n ≥ 4 at most a fraction 1

4 of the
packets can get corrupted. Hence, by Problem 6 on the previous homework, we need:

k ≥
n 1

4

1−2 1
4

=
n
2

when n≥ 4. Combining these two constraints and ignoring the n≥ 4 condition (which does not impact
the correctness), we get the following bound:

k ≥max(1,
n
2
)

so we can use 2max(1,bn
2c) additional inputs to make the scheme work.

10. Write your own problem

Write your own problem related to this week’s material and solve it. You may still work in groups to
brainstorm problems, but each student should submit a unique problem. What is the problem? How to
formulate it? How to solve it? What is the solution?

EECS 70, Fall 2014, Homework 8 18

