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Introduction
At this point, we have seen enough examples that it is worth just taking stock of our model of probability
and many of the key definitions. We are going to formalize some tools to deal with combinations of events.

Probability Recap
The most basic thing is the sample space Ω representing all the distinct possibilites of what the random
experiment could yield. Doing the random experiment results in exactly one outcome ω ∈Ω being selected
by nature. (And nature here is non-adversarial to us — it is not out to cause us trouble on purpose.) Ω itself
might have some internal structure to it. The most common case is that Ω consists of tuples — lists — and
Ω itself can be viewed as a Cartesian product Ω1×Ω2×·· ·×Ωn, where sometimes the individual Ωi can
be thought of as sub-experiments that are all done simultaneously as a part of the larger experiment.

However, we are interested not just in individual outcomes, but in sets of possible outcomes. Sets of out-
comes are called events, and formally, these must be subsets of Ω. The null subset is an allowable event, as
is the entire set Ω itself. Probability is a function on events. It obeys certain natural properties, which are
sometimes called the axioms of probability.

• If A is an event (subset of Ω), Pr[A]≥ 0. This property is called non-negativity.

• If A is an event (subset of Ω), Pr[A]≤ 1 with Pr[Ω] = 1. This property is called normalization.

• If A and B are events, and the events are disjoint (i.e. A∩B = /0), then Pr[A∪B] = Pr[A]+Pr[B]. This
property is called additivity. By induction, it can easily be extended to what is called finite additivity.
If Ai for i = 1,2, . . . ,n are events that are all disjoint (i.e. for all i 6= j, Ai∩A j = /0), then

Pr[
n⋃

i=1

Ai] =
n

∑
i=1

Pr[Ai].

This is complemented, for technical reasons, by a second additivity axiom that deals with countably
infinite collections of events. If Ai for i = 1,2, . . . are events that are all disjoint (i.e. for all i 6= j,
Ai∩A j = /0), then

Pr[
∞⋃

i=1

Ai] =
∞

∑
i=1

Pr[Ai].

For the purposes of EECS70, these two forms of additivity can just be viewed together. The only
important thing is that additivity requires you to be able to list all the events in question in order,
one at a time. This will only become an important restriction later when we consider continuous
probability.

These properties alone give rise to various useful properties that are largely inherited from set theory, and
we will talk about them in the next section.
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Nontrivial combinations of events
In most applications of probability in EECS, we are interested in things like Pr[

⋃n
i=1 Ai] and Pr[

⋂n
i=1 Ai],

where the Ai are simple events (i.e., we know, or can easily compute, the Pr[Ai]). The intersection
⋂

i Ai

corresponds to the logical AND of the events Ai, while the union
⋃

i Ai corresponds to their logical OR. As
an example, if Ai denotes the event that a failure of type i happens in a certain system, then

⋃
i Ai is the event

that the system fails.

In general, computing the probabilities of such combinations can be very difficult. In this section, we discuss
some situations where it can be done. Let’s start with independent events, for which intersections are quite
simple to compute.

Independent Events
Definition 13.1 (independence): Two events A,B in the same probability space are independent if Pr[A∩
B] = Pr[A]×Pr[B].

One intuition behind this definition is the following. Suppose that Pr[B]> 0. Then we have

Pr[A|B] = Pr[A∩B]
Pr[B]

=
Pr[A]×Pr[B]

Pr[B]
= Pr[A].

Thus independence has the natural meaning that “the probability of A is not affected by whether or not B
occurs.” (By a symmetrical argument, we also have Pr[B|A] = Pr[B] provided Pr[A] > 0.) For events A,B
such that Pr[B]> 0, the condition Pr[A|B] = Pr[A] is actually equivalent to the definition of independence.

A deeper intuition is that independence is the way to capture the essence (as far as inference goes) of the
property that two completely unrelated subexperiments have to each other. Knowing something about one
tells you nothing about the other. In fact, several of our previously mentioned random experiments consist
of independent events. For example, if we flip a coin twice, the event of obtaining heads in the first trial is
independent to the event of obtaining heads in the second trial. The same applies for two rolls of a die; the
outcomes of each trial are independent.

The above definition generalizes to any finite set of events:

Definition 13.2 (mutual independence): Events A1, . . . ,An are mutually independent if for every subset
I ⊆ {1, . . . ,n},

Pr[
⋂

i∈I Ai] = ∏i∈I Pr[Ai].

Note that we need this property to hold for every subset I.

For mutually independent events A1, . . . ,An, it is not hard to check from the definition of conditional proba-
bility that, for any 1≤ i≤ n and any subset I ⊆ {1, . . . ,n}\{i}, we have

Pr[Ai|
⋂

j∈I A j] = Pr[Ai].

Note that the independence of every pair of events (so-called pairwise independence) does not necessarily
imply mutual independence. For example, it is possible to construct three events A,B,C such that each pair
is independent but the triple A,B,C is not mutually independent.
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Pairwise Independence Example

Suppose you toss a fair coin twice and let A be the event that the first flip is H’s and B be the event that the
second flip is H’s. Now let C be the event that both flips are the same (i.e. both H’s or both T’s). Of course
A and B are independent. What is more interesting is that so are A and C: given that the first toss came up
H’s, there is still an even chance that the second flip is the same as the first. Another way of saying this is
that P[A∩C] = P[A]P[C] = 1/4 since A∩C is the event that the first flip is H’s and the second is also H’s.
By the same reasoning B and C are also independent.

The fact that A should be independent of C is not intuitively obvious at first glance. This is the power of the
definition of independence. It tells us something nonobvious.

On the other hand, A, B and C are not mutually independent. For example if we are given that A and B
occurred then the probability that C occurs is 1. So even though A, B and C are not mutually independent,
every pair of them are independent. In other words, A, B and C are pairwise independent but not mutually
independent.

Intersections of events
Computing intersections of independent events is easy; it follows from the definition. We simply multiply
the probabilities of each event. How do we compute intersections for events which may not be independent?
From the definition of conditional probability, we immediately have the following product rule (sometimes
also called the chain rule) for computing the probability of an intersection of events.

Theorem 13.1: [Product Rule] For any events A,B, we have

Pr[A∩B] = Pr[A]Pr[B|A].

More generally, for any events A1, . . . ,An,

Pr[
⋂n

i=1 Ai] = Pr[A1]×Pr[A2|A1]×Pr[A3|A1∩A2]×·· ·×Pr[An|
⋂n−1

i=1 Ai].

Proof: The first assertion follows directly from the definition of Pr[B|A] (and is in fact a special case of the
second assertion with n = 2).

To prove the second assertion, we will use induction on n (the number of events). The base case is n = 1,
and corresponds to the statement that Pr[A] = Pr[A], which is trivially true. For the inductive step, let n > 1
and assume (the inductive hypothesis) that

Pr[
⋂n−1

i=1 Ai] = Pr[A1]×Pr[A2|A1]×·· ·×Pr[An−1|
⋂n−2

i=1 Ai].

Now we can apply the definition of conditional probability to the two events An and
⋂n−1

i=1 Ai to deduce that

Pr[
⋂n

i=1 Ai] = Pr[An∩ (
⋂n−1

i=1 Ai)] = Pr[An|
⋂n−1

i=1 Ai]×Pr[
⋂n−1

i=1 Ai]

= Pr[An|
⋂n−1

i=1 Ai]×Pr[A1]×Pr[A2|A1]×·· ·×Pr[An−1|
⋂n−2

i=1 Ai],

where in the last line we have used the inductive hypothesis. This completes the proof by induction. 2

The product rule is particularly useful when we can view our sample space as a sequence of choices. The
next few examples illustrate this point.
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Examples
Coin tosses.

Toss a fair coin three times. Let A be the event that all three tosses are heads. Then A = A1∩A2∩A3, where
Ai is the event that the ith toss comes up heads. We have

Pr[A] = Pr[A1]×Pr[A2|A1]×Pr[A3|A1∩A2]

= Pr[A1]×Pr[A2]×Pr[A3]

= 1
2 ×

1
2 ×

1
2 = 1

8 .

The second line here follows from the fact that the tosses are mutually independent. Of course, we already
know that Pr[A] = 1

8 from our definition of the probability space in an earlier lecture note. Another way of
looking at this calculation is that it justifies our definition of the probability space, and shows that it was
consistent with assuming that the coin flips are mutually independent.

If the coin is biased with heads probability p, we get, again using independence,

Pr[A] = Pr[A1]×Pr[A2]×Pr[A3] = p3.

And more generally, the probability of any sequence of n tosses containing r heads and n− r tails is pr(1−
p)n−r. This is in fact the reason we defined the probability space this way in the previous lecture note: we
defined the sample point probabilities so that the coin tosses would behave independently.

Monty Hall

Recall the Monty Hall problem from an earlier lecture: there are three doors and the probability that the
prize is behind any given door is 1

3 . There are goats behind the other two doors. The contestant picks a door
randomly, and the host opens one of the other two doors, revealing a goat. How do we calculate intersections
in this setting? For example, what is the probability that the contestant chooses door 1, the prize is behind
door 2, and the host chooses door 3?

Let A1 be the event that the contestant chooses door 1, let A2 be the event that the prize is behind door 2, and
let A3 be the event that the host chooses door 3. We would like to compute Pr[A1∩A2∩A3]. By the product
rule:

Pr[A1∩A2∩A3] = Pr[A1]×Pr[A2|A1]×Pr[A3|A1∩A2]

The probability of A1 is 1
3 , since the contestant is choosing the door at random. The probability A2 given

A1 is still 1
3 since they are independent. The probability of the host choosing door 3 given events A1 and A2

is 1; the host cannot choose door 1, since the contestant has already opened it, and the host cannot choose
door 2, since the host must reveal a goat (and not the prize). Therefore,

Pr[A1∩A2∩A3] =
1
3
× 1

3
×1 =

1
9
.

Observe that we did need conditional probability in this setting; had we simply multiplied the probabilities
of each event, we would have obtained 1

27 since the probability of A3 is also 1
3 (can you figure out why?).

What if we changed the situation, and instead asked for the probability that the contestant chooses door 1,
the prize is behind door 1, and the host chooses door 2? We can use the same technique as above, but our
final answer will be different. This is left as an exercise.
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Another useful exercise is to use conditional probability to analyze the case when the two goats have different
genders and Monty is committed to always reveal the location of the female goat. (This could be the door
that you yourself had chosen). In this case, what happens when Monty reveals the female goat is behind one
of the other two doors? What is the conditional probability of winning for switching vs not switching?

Poker Hands

Let’s use the product rule to compute the probability of a flush in a different way. This is equal to 4×Pr[A],
where A is the probability of a Hearts flush. Intuitively, this should be clear since there are 4 suits; we’ll see
why this is formally true in the next section. We can write A =

⋂5
i=1 Ai, where Ai is the event that the ith

card we pick is a Heart. So we have

Pr[A] = Pr[A1]×Pr[A2|A1]×·· ·×Pr[A5|
⋂4

i=1 Ai].

Clearly Pr[A1] =
13
52 = 1

4 . What about Pr[A2|A1]? Well, since we are conditioning on A1 (the first card
is a Heart), there are only 51 remaining possibilities for the second card, 12 of which are Hearts. So
Pr[A2|A1] =

12
51 . Similarly, Pr[A3|A1∩A2] =

11
50 , and so on. So we get

4×Pr[A] = 4× 13
52
× 12

51
× 11

50
× 10

49
× 9

48
,

which is exactly the same fraction we computed in the previous lecture note.

So now we have two methods of computing probabilities in many of our sample spaces. It is useful to keep
these different methods around, both as a check on your answers and because in some cases one of the
methods is easier to use than the other.

Unions of events
You are in Las Vegas, and you spy a new game with the following rules. You pick a number between 1
and 6. Then three dice are thrown. You win if and only if your number comes up on at least one of the dice.

The casino claims that your odds of winning are 50%, using the following argument. Let A be the event that
you win. We can write A = A1∪A2∪A3, where Ai is the event that your number comes up on die i. Clearly
Pr[Ai] =

1
6 for each i. Therefore,

Pr[A] = Pr[A1∪A2∪A3] = Pr[A1]+Pr[A2]+Pr[A3] = 3× 1
6
=

1
2
.

Is this calculation correct? Well, suppose instead that the casino rolled six dice, and again you win iff your
number comes up at least once. Then the analogous calculation would say that you win with probability
6× 1

6 = 1, i.e., certainly! The situation becomes even more ridiculous when the number of dice gets bigger
than 6.

The problem is that the events Ai are not disjoint: i.e., there are some sample points that lie in more than one
of the Ai. (We could get really lucky and our number could come up on two of the dice, or all three.) So if
we add up the Pr[Ai] we are counting some sample points more than once.

Fortunately, there is a formula for this, known as the Principle of Inclusion/Exclusion:

Theorem 13.2: [Inclusion/Exclusion] For events A1, . . . ,An in some probability space, we have

Pr[
⋃n

i=1 Ai] =
n

∑
i=1

Pr[Ai]− ∑
{i, j}

Pr[Ai∩A j]+ ∑
{i, j,k}

Pr[Ai∩A j ∩Ak]−·· ·±Pr[
⋂n

i=1 Ai].
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[In the above summations, {i, j} denotes all unordered pairs with i 6= j, {i, j,k} denotes all unordered triples
of distinct elements, and so on.]

I.e., to compute Pr[
⋃

i Ai], we start by summing the event probabilities Pr[Ai], then we subtract the probabil-
ities of all pairwise intersections, then we add back in the probabilities of all three-way intersections, and so
on.

We won’t prove this formula here; but you might like to verify it for the special case n = 3 by drawing a
Venn diagram and checking that every sample point in A1∪A2∪A3 is counted exactly once by the formula.
You might also like to (hint: do this) prove the formula for general n by induction (in similar fashion to the
proof of the Product Rule above).

Taking the formula on faith, what is the probability we get lucky in the new game in Vegas?

Pr[A1∪A2∪A3] = Pr[A1]+Pr[A2]+Pr[A3]−Pr[A1∩A2]−Pr[A1∩A3]−Pr[A2∩A3]+Pr[A1∩A2∩A3].

Now the nice thing here is that the events Ai are mutually independent (the outcome of any die does not
depend on that of the others), so Pr[Ai ∩A j] = Pr[Ai]Pr[A j] = (1

6)
2 = 1

36 , and similarly Pr[A1 ∩A2 ∩A3] =
(1

6)
3 = 1

216 . So we get

Pr[A1∪A2∪A3] =
(
3× 1

6

)
−
(
3× 1

36

)
+ 1

216 = 91
216 ≈ 0.42.

So your odds are quite a bit worse than the casino is claiming!

When n is large (i.e., we are interested in the union of many events), the Inclusion/Exclusion formula is
essentially useless because it involves computing the probability of the intersection of every non-empty
subset of the events: and there are 2n− 1 of these! Sometimes we can just look at the first few terms of it
and forget the rest: note that successive terms actually give us an overestimate and then an underestimate of
the answer, and these estimates both get better as we go along.

However, in many situations we can get a long way by just looking at the first term:

1. Disjoint events. If the events Ai are all disjoint (i.e., no pair of them contain a common sample point
— such events are also called mutually exclusive), then

Pr[
⋃n

i=1 Ai] =
n

∑
i=1

Pr[Ai].

[Note that we have already used this fact several times in our examples, e.g., in claiming that the
probability of a flush is four times the probability of a Hearts flush — clearly flushes in different suits
are disjoint events.]

2. Union bound. Always, it is the case that

Pr[
⋃n

i=1 Ai]≤
n

∑
i=1

Pr[Ai].

This merely says that adding up the Pr[Ai] can only overestimate the probability of the union. Crude
as it may seem, in the next lecture note we’ll see how to use the union bound effectively in a core
EECS example.
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