
EECS 70 Discrete Mathematics and Probability Theory
Fall 2014 Anant Sahai Note 6
This note is partly based on Section 1.4 of “Algorithms," by S. Dasgupta, C. Papadimitriou and U. Vazirani,
McGraw-Hill, 2007.

Public Key Cryptography
In this note, we discuss a very nice and important application of modular arithmetic: the RSA public-key
cryptosystem, named after its inventors Ronald Rivest, Adi Shamir and Leonard Adleman.

Cryptography is an ancient subject that really blossomed into its modern form at the same time1 as the other
great revolutions in the general fields of information science/engineering. The setting for basic cryptography
is typically described via a cast of three characters: Alice and Bob, who with to communicate confidentially
over some (insecure) link, and Eve, an eavesdropper who is listening in and trying to discover what they are
saying.

Let’s assume that Alice wants to transmit a message x (written in binary) to Bob. She will apply her encryp-
tion function E to x and send the encrypted message E(x) (also called the cyphertext) over the link; Bob,
upon receipt of E(x), will then apply his decryption function D to it and thus recover the original message
(also called the plaintext): i.e., D(E(x)) = x.

Since the link is insecure, Alice and Bob have to assume that Eve may get hold of E(x). (Think of Eve
as being a “sniffer" on the network.) Thus ideally we would like to know that the encryption function E is
chosen so that just knowing E(x) (without knowing the decryption function D) doesn’t allow one to discover
anything about the original message x.

For millenia cryptography was based on what are now called private-key protocols. In such a scheme,
Alice and Bob meet beforehand and together choose a secret codebook, with which they encrypt all future
correspondence between them. (This codebook plays the role of the functions E and D above.) Eve’s only
hope then is to collect some encrypted messages and use them to at least partially figure out the codebook.

Public-key schemes, such as RSA, are significantly more subtle and tricky: they allow Alice to send Bob
a secure message without ever having met him privately before! This almost sounds impossible, because
in this scenario there is a symmetry between Bob and Eve: why should Bob have any advantage over Eve
in terms of being able to understand Alice’s message? The central idea between the RSA cryptosystem is
that Bob is able to implement a digital lock, to which only he has the key. Now by making this digital lock
public, he gives Alice (or, indeed, anybody else) a way to send him a secure message which only he can
open.

Here is how the digital lock is implemented in the RSA scheme. Each person has a public key known to the
whole world, and a private key known only to themselves. When Alice wants to send a message x to Bob,
she encodes it using Bob’s public key. Bob then decrypts it using his private key, thus retrieving x. Eve is

1And in reality, involving some of the same cast of characters. Both Alan Turing and Claude Shannon were active in code-
breaking during the war and Shannon had a classic paper that is considered the birth of the information-theoretic understanding of
secrecy and dovetails with his other more famous paper that gave rise to the modern information-theoretic view of communication.
Both cryptography and communication weave together information, computation, and randomness in surprising ways. In 70, you
just get a tiny taste of these spectacularly beautiful fields.

EECS 70, Fall 2014, Note 6 1

welcome to see as many encrypted messages for Bob as she likes, but she will not be able to decode them
(under certain simple assumptions explained below).

But before we can go into how to use modulo arithmetic to achieve this sort of scheme, we need to review
some basic properties of functions.

Bijections
A function is a mapping from a set (called the domain) of inputs A to a set of outputs B: for input x ∈ A,
f (x) must be in the set B. To denote such a function, we write f : A→ B.

Consider the following examples of functions, where both functions map {0, . . . ,m−1} to itself:

f (x) = x+1 mod m

g(x) = 2x mod m

A bijection is a function for which every b ∈ B has a unique pre-image a ∈ A such that f (a) = b. Note that
this consists of two conditions:

1. f is onto: every b ∈ B has a pre-image a ∈ A.

2. f is one-to-one: for all a,a′ ∈ A, if f (a) = f (a′) then a = a′.

Looking back at our examples, we can see that f is a bijection; the unique pre-image of y is y−1. However,
g is only a bijection if m is odd. Otherwise, it is neither one-to-one nor onto. The following lemma can be
used to prove that a function is a bijection:

Lemma: For a finite set A, f : A→ A is a bijection if there is an inverse function g : A→ A such that ∀x ∈ A
g(f (x)) = x.

Proof: If f (x) = f (x′), then x = g(f (x)) = g(f (x′)) = x′. Therefore, f is one-to-one. Since f is one-to-one,
there must be |A| elements in the range of f . This implies that f is also onto. 2

RSA
A particularly practical family of bijections is the RSA function, named after its inventors Ronald Rivest,
Adi Shamir and Leonard Adleman:

E(x) = xe mod N

where N = pq (p and q are two large primes), E : {0, . . . ,N−1} → {0, . . . ,N−1} and e is relatively prime
to (p−1)(q−1). The inverse of the RSA function is:

D(x) = xd mod N

where d is the inverse of e mod (p−1)(q−1). In other words ed ≡ 1 (mod (p−1)(q−1)).

Let’s bring back our standard cast of characters and assume that Alice wants to transmit a message x (mapped
into a number between 2 and N−1. Can you see why we avoid both 0 and 1?) to Bob. In order to encrypt the
message, Alice only needs Bob’s public key (N,e). In order to decrypt the message, Bob needs his private
key d. The pair (N,e) can be thought of as the serial number of the public lock - anyone can place a message

EECS 70, Fall 2014, Note 6 2

in a box and lock it, but only Bob has the key d to open the lock. The idea is that since Eve does not have
access to d, she will not be able to gain information about Alice’s message.

Here is an example:

Example: Let p = 5, q = 11, and N = pq = 55. (In practice, p and q would be much larger.) Then we can
choose e = 3, which is relatively prime to (p−1)(q−1) = 40. Thus Bob’s public key is (55,3). His private
key is d = 3−1 (mod 40) = 27. For any message x that Alice (or anybody else) wishes to send to Bob, the
encryption of x is y = x3 mod 55, and the decryption of y is x = y27 mod 55. So, for example, if the message
is x = 13, then the encryption is y = 133 = 52 mod 55, and this is decrypted as 13 = 5227 mod 55.

We will now prove that D(E(x)) = x (and therefore E(x) is a bijection). We will require a beautiful theorem
from number theory known as Fermat’s Little Theorem, which is the following:

Theorem 6.1: [Fermat’s Little Theorem] For any prime p and any a ∈ {1,2, . . . , p−1}, we have ap−1 ≡ 1
(mod p).

Let S be the nonzero integers modulo p; that is, S = {1,2, . . . , p− 1}. Define a function f : S→ S such
that f (x) = ax mod p. Here’s the crucial observation: f is simply a bijection from S to S; it permutes the
elements of S. For instance, here’s a picture of the case a = 3, p = 7:

6

5

4

3

2

1 1

2

3

4

5

6

Figure 1: Multiplication by (3 mod 7)

With this intuition, we can now prove Fermat’s Little Theorem:

Proof: Our first claim is that f (x) is a bijection. We will then show that this claim implies the theorem.

To show that f is a bijection, we simply need to argue that the numbers a · i mod p are distinct. This is
because if a · i ≡ a · j (mod p), then dividing both sides by a gives i ≡ j (mod p). They are nonzero
because a · i≡ 0 similarly implies i≡ 0. (And we can divide by a, because by assumption it is nonzero and
therefore relatively prime to p. So a multiplicative inverse for a must exist.)

Now we can prove the theorem. Since f is a bijection, we know that the image of f is S. Now if we take the
product of all elements in S, it is equal to the product of all elements in the image of f . We are essentially
looping through the elements of S in two different ways2. Once in their natural order, and then again in the
permuted ordering defined by f . So

(p−1)!≡ ap−1 · (p−1)! (mod p).

Dividing both sides by (p− 1)! (which we can do because it is relatively prime to p, since p is assumed
prime) then gives the theorem. 2

2This sort of thing is something that we will be doing often in this course — looking at the same thing in two different ways.

EECS 70, Fall 2014, Note 6 3

Let us return to proving that D(E(x)) = x:

Theorem 6.2: Under the above definitions of the encryption and decryption functions E and D, we have
D(E(x)) = x mod N for every possible message x ∈ {0,1, . . . ,N−1}.
The proof of this theorem relies on Fermat’s Little Theorem:

Proof of Theorem 6.2: To prove the statement, we have to show that

(xe)d = x mod N for every x ∈ {0,1, . . . ,N−1}. (1)

Let’s consider the exponent, which is ed. By definition of d, we know that ed = 1 mod (p−1)(q−1); hence
we can write ed = 1+ k(p−1)(q−1) for some integer k, and therefore

xed− x = x1+k(p−1)(q−1)− x = x(xk(p−1)(q−1)−1). (2)

Looking back at equation (1), our goal is to show that this last expression in equation (2) is equal to 0 mod N
for every x.

Now we claim that the expression x(xk(p−1)(q−1)− 1) in (2) is divisible by p. To see this, we consider two
cases:

Case 1: x is not a multiple of p. In this case, since x 6= 0 mod p, we can use Fermat’s Little Theorem to deduce
that xp−1 = 1 mod p. Then (xp−1)k(q−1) ≡ 1k(q−1) mod p and hence xk(p−1)(q−1)− 1 = 0 mod p, as
required.

Case 2: x is a multiple of p. In this case the expression in (2), which has x as a factor, is clearly divisible by p.

By an entirely symmetrical argument, x(xk(p−1)(q−1)−1) is also divisible by q. Therefore, it is divisible by
both p and q, and since p and q are primes it must be divisible by their product, pq = N. But this implies
that the expression is equal to 0 mod N, which is exactly what we wanted to prove. 2

So we have seen that the RSA protocol is correct, in the sense that Alice can encrypt messages in such a way
that Bob can reliably decrypt them again. But how do we know that it is secure, i.e., that Eve cannot get any
useful information by observing the encrypted messages? The security of RSA hinges upon the following
simple assumption:

Given N, e and y = xe mod N, there is no efficient algorithm for determining x.

This assumption is quite plausible. How might Eve try to guess x? She could experiment with all possible
values of x, each time checking whether xe = y mod N; but she would have to try on the order of N values
of x, which is completely unrealistic if N is a number with (say) 512 bits. This is because N ≈ 2512 is
larger than estimates for the age of the Universe in femtoseconds! Alternatively, she could try to factor N to
retrieve p and q, and then figure out d by computing the inverse of e mod (p−1)(q−1); but this approach
requires Eve to be able to factor N into its prime factors, a problem which is believed to be impossible to
solve efficiently for large values of N. She could try to compute the quantity (p−1)(q−1) without factoring
N; but it is possible to show that computing (p− 1)(q− 1) is equivalent to factoring N. We should point
out that the security of RSA has not been formally proved: it rests on the assumptions that breaking RSA is
essentially tantamount to factoring N, and that factoring is hard.

We close this note with a brief discussion of implementation issues for RSA. Since we have argued that
breaking RSA is impossible because factoring would take a very long time, we should check that the com-
putations that Alice and Bob themselves have to perform are much simpler, and can be done efficiently.

There are really only two non-trivial things that Alice and Bob have to do:

EECS 70, Fall 2014, Note 6 4

1. Bob has to find prime numbers p and q, each having many (say, 512) bits.

2. Both Alice and Bob have to compute exponentials mod N. (Alice has to compute xe mod N, and Bob
has to compute yd mod N.)

Both of these tasks can be carried out efficiently. The first requires a rich source of primes3. You will learn
how to do this task in the upper-division algorithms course 170, and this is based on results from number
theory. The second requires an efficient algorithm for modular exponentiation, which you have already seen
in the previous note. You can further speed up the decryption step by leaning on the Chinese Remainder
Theorem and working in coordinates mod p and mod q.

To summarize, then, in the RSA protocol Bob need only perform simple calculations such as multiplication,
exponentiation and primality testing to implement his digital lock. Similarly, Alice and Bob need only
perform simple calculations to lock and unlock the the message respectively—operations that any pocket
computing device could handle. By contrast, to unlock the message without the key, Eve would have
to perform operations like factoring large numbers, which (at least according to widely accepted belief)
requires more computational power than all the world’s most sophisticated computers combined! This
compelling guarantee of security without the need for private keys explains why the RSA cryptosystem is
such a revolutionary development in cryptography.

3To find large prime numbers, we use the fact that, given a positive integer n, there is an efficient algorithm that determines
whether or not n is prime. (Here “efficient" means a running time of O((logn)k) for some small k, i.e., a low-degree power of the
number of bits in n. Notice the dramatic contrast here with factoring: we can tell efficiently whether or not n is prime, but in the
case that it is not prime we cannot efficiently find its factors. The success of RSA hinges crucially on this distinction.) Given that
we can test for primes, Bob just needs to generate some random integers n with the right number of bits, and test them until he finds
two primes p and q. This works because of the following basic fact from number theory (which we will not prove), which says that
a reasonably large fraction of positive integers are prime:

[Prime Number Theorem] Let π(n) denote the number of primes that are less than or equal to n. Then for all n≥ 17, we have
π(n)≥ n

lnn . (And in fact, limn→∞
π(n)

n/ lnn = 1.)

Setting n = 2512, for example, the Prime Number Theorem says that roughly one in every 355 of all 512-bit numbers are prime.
Therefore, if we keep picking random 512-bit numbers and testing them, we would expect to have to try only about 355 numbers
until we find a prime.

EECS 70, Fall 2014, Note 6 5

