
EECS 70 Discrete Mathematics and Probability Theory
Spring 2014 Anant Sahai Note 24

The random coding argument: digital communication
In terms of math, this note is about a powerful and surprising use of probability — it can be used to prove the
existence of useful objects even when we might not be able to give explicit constructions for those objects.

At the practical level, this note is motivated by the desire for error correcting codes that work at the bit
level rather than at the packet level. The core arguments date back to Claude Shannon’s revolutionary 1948
paper entitled “A Mathematical Theory of Communication.” Shannon was truly one of the great minds of
the 20th century and is one of those responsible for bringing forth the digital age. His 1937 master’s thesis
is credited with connecting the then seemingly esoteric subject of Boolean Algebra to the design of digital
circuits and switching systems, and showing that such circuit design could be done in a systematic way. His
1940 PhD dissertation brought mathematics to the theory of genetics, and then he found himself working
on both fire-control systems as well as secrecy/cryptography during World War II. Shannon established the
fundamental limits on secrecy1, but to do so, he had to better understand what was the essential heart of
communication itself. His 1948 paper firmly established the fundamental nature of “bits” and what reliable
communication can/should mean and seeded the modern field of Information Theory.

The Wikipedia article on Claude Shannon is pretty good and quite inspiring. You are encouraged to read it.

Communication over a Noisy Channel
The fundamental problem in both data-links and data-storage is the same — communication over a noisy
channel. In a link, the communication usually spans space: some rapidly moving information-carrying
medium (light, radio waves, sound waves, electrons in a wire, etc.) is modulated at the sender to carry
the message and is then received at the destination a very short time later where it is captured by some
detector. In storage, the communication spans time: some stable information-carrying medium (pigments,
magnetic domains, a capacitor, etc.) are configured by the recorder to hold the message. This medium is
later read by some detector. In both cases, the original message must be reliably extracted from the output
of the detector. The challenge is that all known physical mechanisms for carrying information are subject
to noise — chance fluctuations that can corrupt what was originally sent. For example, the random motion
of electrons due to finite non-zero temperatures, the cosmic background radiation left over from the Big
Bang, the actions of cosmic rays and natural ambient radioactivity, as well as interfering signals — all of
these are often modeled as noise since they are not maliciously trying to deceive us, but impair our ability
to communicate nonetheless.

One of the simplest models is called the binary symmetric channel. Let Xi be the i-th input bit to the channel
— what was sent by radio or written to disk. This is something that the message encoder gets to choose
based on the message, but is restricted to be either 0 or 1. The i-th output of the channel is denoted Yi and
this equals Xi with probability 1− p and is flipped with probability p. Mathematically, we can view X and Y
as taking values in the binary field GF(2) and let Zi be an i.i.d. sequence of Bernoulli random variables with
parameter p. (Zi = 1 with probability p and Zi = 0 with probability 1− p.) Then Yi = Xi +Zi mod 2. Note

1The paper was entitled “A Mathematical Theory of Secrecy Systems” and was promptly classified. It was declassified in 1949.

EECS 70, Spring 2014, Note 24 1

Figure 1: A repetition code

that Yi is different from X if and only if Zi = 1. Reflecting the non-maliciousness of the channel, the Zi are
independent of the message and the encoding scheme.

If you want to make everything concrete in your mind, think of p = 0.05 which reflects a situation in which
on average, one in twenty bits get flipped. Is there any hope of achieving reliable transmission or reliable
storage of information in the face of such corruption?

The repetition code
The easiest way to increase the reliability of a system is to add redundancy — just repeat the desired bit over
and over again. The situation is shown in Figure 1.

Question: I have one bit of information that I want to communicate over a noisy channel. The noisy channel
flips each one of my transmitted symbols independently with probability p < 0.5. How much improvement
in performance do I get by repeating my transmission n times?

Comment: In an earlier lecture note, we also considered a communication problem and gave some examples
of error-correcting codes. However, the models for the communication channel are different. There, we put
a bound on the maximum number of flips the channel can make. Here, we do not put such bounds a priori
but instead impose a bound on the probability that each bit is flipped (so that the expected number of bits
flipped is np). Since there is no bound on the maximum number of flips the channel can make, there is no
guarantee that the receiver will always decode correctly. Instead, one has to be satisfied with being able to
decode correctly with high probability, e.g., probability of error < 0.001.

In the repetition code, each Xi = X . Notice that the received symbols Yi’s are not independent; they all
contain information about the transmitted bit X . However, given X , they are (conditionally) independent
since they then only depend on the noise Zi.

Decision rule

First, we have to figure out what decision rule to use at the receiver, i.e., given each of the 2n possible
received sequences, Y1 = b1,Y2 = b2, . . .Yn = bn, how should the receiver guess what value of X was trans-
mitted?

For this particular example, there is an obvious choice: a majority rule: guess that a 0 was transmitted if the
number of 0’s in the received sequence is at least as large as the number of 1’s, otherwise guess that a 1 was
transmitted.

EECS 70, Spring 2014, Note 24 2

Why is this a good choice? The intuition is pretty simple. Look at the Zs. As long as p < 0.5, 0s are more
likely than 1s. So, it makes sense to bet that fewer raw bits were flipped rather than more raw bits!

(You can skip the rest of this section if you want.)

How would we come to this obvious choice in a more mechanical way? A natural rule is the maximum
a posteriori (MAP) rule: guess the value a∗ for which the conditional probability of X = a∗ given the
observations is the largest among all a. More explicitly:

a∗ =
{

0 if Pr[X = 0|Y1 = b1, . . . ,Yn = bn]≥ Pr[X = 1|Y1 = b1, . . .Yn = bn]
1 otherwise

Now, let’s reformulate this rule so that it looks cleaner. By Bayes’ rule, we have

Pr[X = 0|Y1 = b1, . . .Yn = bn] =
Pr[X = 0]Pr[Y1 = b1, . . . ,Yn = bn|X = 0]

Pr[Y1 = b1, . . . ,Yn = bn]
(1)

=
Pr[X = 0]Pr[Y1 = b1|X = 0]Pr[Y2 = b2|X = 0] . . .Pr[Yn = bn|X = 0]

Pr[Y1 = b1, . . . ,Yn = bn]
(2)

In the second step, we are using the fact that the observations Yi’s are conditionally independent given X .
(Why?) Similarly,

Pr[X = 1|Y1 = b1, . . .Yn = bn] =
Pr[X = 1]Pr[Y1 = b1, . . . ,Yn = bn|X = 1]

Pr[Y1 = b1, . . . ,Yn = bn]
(3)

=
Pr[X = 1]Pr[Y1 = b1|X = 1]Pr[Y2 = b2|X = 1] . . .Pr[Yn = bn|X = 1]

Pr[Y1 = b1, . . . ,Yn = bn]
.(4)

An equivalent way of describing the MAP rule is that it computes the ratio of these conditional probabilities
and checks if it is greater than or less than 1. If it is greater than (or equal to) 1, then guess that a 0 was
transmitted; otherwise guess that a 1 was transmitted. (This ratio indicates how likely a 0 is compared to a
1, and is called the likelihood ratio.) Dividing (2) and (4), and recalling that we are assuming Pr[X = 1] =
Pr[X = 0], the likelihood ratio L is:

L =
n

∏
i=1

Pr[Yi = bi|X = 0]
Pr[Yi = bi|X = 1]

. (5)

Note that we didn’t have to compute Pr[Y1 = b1, . . . ,Yn = bn], since it appears in both of the conditional
probabilities and got canceled out when computing the ratio.

Now,
Pr[Yi = bi|X = 0]
Pr[Yi = bi|X = 1]

=

{
p

1−p if bi = 1
1−p

p if bi = 0

In other words, L has a factor of p/(1− p)< 1 for every 1 received and a factor of (1− p)/p > 1 for every
0 received. So the likelihood ratio L is greater than 1 if and only if the number of 0’s is greater than the
number of 1’s.

Thus, the decision rule is simply a majority rule: guess that a 0 was transmitted if the number of 0’s in the
received sequence is at least as large as the number of 1’s, otherwise guess that a 1 was transmitted.

Note that in deriving this rule, we assumed that Pr[X = 0] = Pr[X = 1] = 0.5. When the prior distribution is
not uniform, the MAP rule is no longer a simple majority rule.

EECS 70, Spring 2014, Note 24 3

Error probability analysis

What is the probability that the majority-rule guess is incorrect? This is just the event E that the number of
flips by the noisy channel is greater than n/2. So the error probability of our majority rule is:

Pr[E] = Pr
[n

∑
i=1

Zi >
n
2

]
=

n

∑
k=dn/2e

(
n
k

)
pk(1− p)n−k,

recognizing that the random variable S := ∑
n
i=1 Zi has a binomial distribution with parameters n and p.

This gives an expression for the error probability that can be numerically evaluated for given values of n.
Given a target error probability Pe of, say, 0.001, one can then compute the smallest number of repetitions
needed to achieve the target error probability.2

As in the hashing application we looked at earlier in the course, we are interested in a more explicit rela-
tionship between n and the error probability to get a better intuition of the problem. The above expression
is too cumbersome for this purpose. Instead, notice that n/2 is greater than the mean np of S and hence the
error event is related to the tail of the distribution of S.

We now have multiple possibilities for what to do.

• One choice is to apply Chebyshev’s inequality to bound the error probability:

Pr
[
S >

n
2

]
< Pr

[
|S−np|> n(

1
2
− p)

]
≤ Var(S)

n2(1
2 − p)2

=
p(1− p)
(1

2 − p)2
· 1

n
,

using the fact that Var(S) = nVar(Zi) = np(1− p).

The important thing to note is that the error probability decreases with n, so indeed by repeating more
times the performance improves (as one would expect!). For a given target error probability of, say,
0.001, one needs to repeat no more than

n = 1000 · p(1− p)
(1

2 − p)2

times. For p = 0.05, this evaluates to 235.

This is a pretty pessimistic result. It says that to bring the probability of error down from 0.05 to 0.001
— a factor of 50 reduction — we need around 235 repetitions. And this would seem to be growing as
O(1

Pe
) if Pe→ 0. Are things really that bad?

• A faster cheaper hack is to simply apply the Central Limit Theorem. We expect np flips. We’re in
trouble if we reach n

2 flips or more. According to the CLT, the question boils down to how many
standard deviations away that is. Looking at a Gaussian table says that the tail probability beyond
3.1 standard deviations on one side is about 0.001. In other words Q−1(0.001) ≈ 3.1 where Q(t) =∫

∞

t
1√
2π

e−
x2
2 dx for t > 0.

For a given n, the standard deviation is
√

p(1− p)n and so we want pn+3.1
√

p(1− p)n = n
2 , which

is the same as saying (1
2 − p)

√
n = 3.1

√
p(1− p) or n = (3.1)2 p(1−p)

(1
2−p)2 . For p = 0.05, this gives us an

n≈ 2.25 or practically speaking, n = 3.

2Needless to say, one does not want to repeat more times than is necessary as we are using more time or space to communicate
each information bit and the rate of communication is reduced. We like fast transmission of information and high information
densities for storage, if we can get them reliably.

EECS 70, Spring 2014, Note 24 4

This just feels wrong. Not only is it a lot smaller than 235, but if n = 3, then two or more flips will
cause an error. But the probability of 2 flips is already 0.007125 and 3 flips is another 0.000125, for a
total probability of error of 0.00725, which is certainly greater than 0.001.

So, the CLT approximation was too aggressive3 in this case. But are we even close? What if we go
to the next reasonable value of n = 5. Then, three or more flips cause an error. Three flips have a
probability of about 0.00113 with four flips being much less likely. So 5 is almost right.

n = 7 will work since we the probability of getting 4 flips is a mere 0.00019 or so, and beyond 4 flips
is negligible by comparison.

So, we find ourselves in a situation where Chebyshev’s inequality is far too conservative while the
CLT is aggressive, but is kind-of in the right ballpark. Clearly we need a better way to proceed.

• The better way to proceed is represented by Chernoff’s bound. For the case of Bernoulli-p ran-
dom variables, Chernoff’s bound4 says that for a > p, we know P(∑n

i=1 Zi ≥ an) ≤ e−nD(a||p) where
D(a||p) = a ln a

p +(1−a) ln 1−a
1−p . This particular D function is called the binary divergence.

Evaluating D(0.5||0.05) in our case gives 0.83. We want to choose an n so that e−nD(0.5||0.05) = 0.001,
and so this bound says that n = 9 is certainly safe.

Chernoff’s bound is a bit conservative, but not by a lot. The bound wanted us to use something a little
bigger than 8. Meanwhile 7 was safe.

So a repetition code lets us get to a rate of 1 data bit for every 7 raw bits or a rate of about 0.143 bits/raw-bit.
This is for a target error probability of 10−3 and a raw error rate of 0.05.

Furthermore, both Chernoff, Chebyshev, and the CLT agree that if we were to demand increasing reliability
and lower target error probabilities, this rate would get ever lower. Chernoff says that the rate would drop
like O(1

ln(1
Pe
)
) as Pe→ 0.

Is this good or bad? Can we even hope for anything better? Can we do any better?

Trying to use Reed-Solomon codes
You are encouraged to take what you’ve learned above and apply it to using Reed-Solomon codes for this
problem. The key challenge is that Reed-Solomon codes work at the packet level rather than the individual
bit level. This is because the codewords are fundamentally the evaluations of an underlying polynomial at
different points. A single bit by itself comes from GF(2) and there are only two points at which to evaluate
anything! Clearly, the laws of large numbers cannot help us with only two points. To get more points, we
need bigger packets.

The trick is to create convoys of bits that travel together. ` bits can be grouped together into an ` bit packet
— and fortunately it turns out that there exist5 finite fields GF(2`). The problem is that when we do this, the

3What went wrong? What is wrong is that the gap between p and 1
2 is too big. The Central Limit Theorem has the word

“Central” in its name for a reason! It is meant to be a good approximation to small deviations from the average.
4There are many ways of seeing this, and the HW asks you to derive a close relative of this particular bound. Can you see why

Stirling’s approximation would also hint at this particular form? Hint: look at Stirling’s approximation as applied to the dominant
binomial coefficient.

The other straightforward way to derive this is to take the event {∑n
i=1 Zi≥ an} and use the monotonicity of a growing exponential

to say that this is just the same event as {er ∑
n
i=1 Zi ≥ eran} as long as r > 0. Then apply Markov’s inequality, use the fact that the

exponent of a sum is the product of exponents, use the fact that the expectation of a product is the product of expectations for
independent random variables, and then leverage the identically-distributed nature of things to pull all the n terms together with
algebra. At this point, just optimize over the choice of r and you get this bound after some basic calculus and algebra.

5More on these in Math 113 and 114. They come from viewing polynomials as numbers of a sort.

EECS 70, Spring 2014, Note 24 5

raw probability of error on these packets is larger than it was for the original bits. For example, for ` = 8,
the raw probability of error at the byte level jumps to 0.3366 or so because the byte will be corrupted if any
bit within it is corrupted.

And how shall we deal with these corrupted packets? We can try to use the Berlekamp-Welch decoding
algorithm from the previous notes to solve this. After all, that algorithm (which maps the problem into
solving a linear system of equations) is guaranteed to be able to correct up to a certain number of malicious
errors so it will certainly work on that same number of random errors.

It is an excellent and highly recommended exercise for you to actually do this analysis. It turns out for `= 8
and p = 0.05, that about we can use a code with 256 points in it. Of these, even with a 3.1 sigma error event,
no more than 110 of these bytes will be corrupted. That means that 256-2*110 = 36 bytes of payload data
can be reliably carried by the code. This gives a rate of 36 data bytes per 256 raw bytes or 0.14.

It turns out that as we vary ` to be smaller than 8, the net rates are lower because we have shorter codes
and consequently must budget for proportionately larger random fluctuations. When ` is larger than 8, the
probability of corruption of at the packet level gets higher and although the random fluctuations that must
be budgeted for are smaller, the average is bigger. Once again, the rates become lower. Once ` exceeds 13,
this approach just stops working because more than half the packets have errors on average.

Furthermore, this approach breaks down if we try to approach probabilities of error that are very small. It
simply will not let us reach probabilities of error around 10−11 or lower. Meanwhile, the Chernoff bound
tells us that using a repetition code of length 31 would certainly give us that kind of reliability.

Random Coding
Repetition codes keep bits isolated but have rates that tend to zero as reliability demands increase. The
Reed-Solomon codes let bits convoy together to share redundancy among them, but turn out not to work
well if we use the Berlekamp-Welch decoding approach.

So, is there any hope of doing better?

The first part of Claude Shannon’s genius was to actually ask the question in such a way that there was some
hope to answer it. We need to make the idea of encoding and decoding a little bit more precise.

We have m distinct potential messages. We would like to encode them using n raw bits. We want to do so
in such a way that when these encoded bits get corrupted by random noise with a probability p of flipping a
bit, that the decoder can reliably infer the message that was actually sent.

• The set of m messages represents m potential things that the encoder wants to encode. Without loss of
generality, we consider these to simply be the m natural numbers 0,1, . . . ,m−1. The numbers might
mean an answer to the question “How much wood could a woodchuck chuck if a woodchuck could
chuck wood?” Or the messages might simply represent a list of strings so 0 = “Cake is so delicious and
moist,” 1 = “The cake is a lie,” 3 = “I’m a potato,” 4 = “Make life take the lemons back,” 5 = “Mantis
men,” 6 = “I’m in space.” But it doesn’t matter. The meaning is irrelevant for communication. What
matters is that both the encoder and the decoder agree that exactly one of these will be transmitted,
but the decoder doesn’t know which one.

• The codebook is a mapping that takes the messages into codewords. Each codeword is an n-length
binary string. The bits in the codewords are called codebits. Both the encoder and the decoder know
the entire codebook. The codeword for message s is denoted x1(s),x2(s),x3(s),x4(s), . . . ,xn(s).

• The true message S is the message that we want to convey. The corresponding codeword is the true

EECS 70, Spring 2014, Note 24 6

codeword X1,X2, . . .Xn and is actually transmitted. The encoder knows the true message and hence
the true codeword. The decoder doesn’t know the true message and must try to infer it by trying to
detect which codeword was sent by using its received string Y1,Y2, . . .Yn. The decoder’s guess for the
true message is called the decoded message and is represented by Ŝ.

• All codewords other than the true codeword are called the false codewords.

• We say that the decoder has made an error if the decoded message does not equal the true message.

• The rate of the code measured in data bits per raw bit is defined to be log2 m
n because we need log2 m

data bits to uniquely specify which message is the true one. Since correct decoding lets the decoder
know which message is the true one, it can be considered as successfully communicating log2 m bits.

The goal is to have the probability of error be small for every potential message in the codebook.

Too many codebooks

So why don’t we simply search over the set of all codebooks? Let’s count them first. Given the messages,
each codebook is uniquely defined by a list of m codewords which is essentially an mn-length bitstring all
together. Consequently there are 2mn different codebooks of length n for m messages.

To see why this is way too big, let’s assume that we want to have the rate of the code be 1
2 data bits per raw

bit. Then, we have the following table:

message length m n 2nm

1 2 2 16
2 4 4 216 = 65536
3 8 6 248 = 281 Trillion
4 16 8 2128 = 3.4×1038

5 32 10 2320 = 2.1×1096

For comparison, it is good to remember that it has only been 4.4×1023 microseconds since the Big Bang,
the mass of the Solar system is only about 2× 1036 milligrams and the number of atoms in the observable
universe is estimated to be about 1080. So these are absurdly large numbers of codebooks.

At first glance, asking the question this way seems hopeless. It feels like asking whether there is a needle
hidden somewhere in a universe-sized haystack.

How to decode in principle

Before we describe Shannon’s brilliant method of avoiding this enormous search, let’s first understand how
the decoder should decode.

To do this, let’s see how to generalize the insight from the repetition code. We can think of the repetition
code as having two codewords 0,0,0,0, . . . ,0 and 1,1,1,1, . . . ,1. The majority rule can be interpreted as
asking which one of these is closer to the received string Y1,Y2,Y3,Y4, . . . ,Yn. This makes sense because if
we XOR the received string with the true codeword, we just get back the noise string Z1,Z2,Z3,Z4, . . . ,Zn.
What we are doing is counting the hypothetical number of 1s in this conjectured noise string, and then saying
that because the noise prefers to be 0 over being 1, we should pick the codeword that implies a smaller count
of 1s for the noise.

EECS 70, Spring 2014, Note 24 7

There is no reason why in principle we cannot apply this exact same idea to the case of more than 2 messages.
We simply decode to the codeword that is closest to the received string in terms of the number of positions
in which it agrees with it. If there is a tie, we can just guess or give up.

This isn’t a very practical approach since it requires O(mn) operations to do and m might be quite large. But
it is certainly doable in principle.

The random coding construction

Shannon’s brilliant move was to hope that instead of searching for a needle in a haystack, we were searching
for hay in a haystack.

Instead of trying to calculate the probability of error for each message in each codebook one by one, he
suggested that we calculate the average probability of error across all messages in all codebooks! At first
glance, this seems crazy. If it is hard to calculate it for one, why would it be easier to calculate the average?

The key insight is that by putting a uniform distribution over all messages and all codebooks, we have
added a lot of symmetry to the problem. Furthermore, a uniform distribution on all codebooks is the same
as putting a uniform distribution on all 2mn bitstrings of length mn which is the same as having all those
codebits in the codebook be drawn i.i.d. Bernoulli- 1

2 . This means that each codeword is independent of all
other codewords.

Bounding the probability of error

We want to compute the E(P(Ŝ 6= S)) where the expectation is taken over all the uniform choices for true
messages S and codebooks, and the probability inside just has the randomness of the noise in it. It is easy to
see6 that this is the same as P(Ŝ 6= S) where we allow all the randomness together.

The challenge is that it is hard to exactly analyze even this probability of error. However, the spirit of the
laws of large numbers tells us that most of the time, the true codeword will be about np bitflips away from
the received sequence. So we can bound the probability of error by thinking about what could go wrong.
We could have an error because the noise itself was particularly strange and flipped way more than np bits.
Or we could have an error because we got unlucky and happened to get pushed by the noise to be too close
to one of the other codewords. Let T be the threshold we used to judge the gap between close and far in
terms of the number of bit flips.

P(Ŝ 6= S) = P(∃false s̃ so that
n

∑
i=1

(Yi +Xi(s̃) mod 2)≤
n

∑
i=1

(Yi +Xi(S) mod 2)) (6)

= P(∃false s̃ so that
n

∑
i=1

(Yi +Xi(s̃) mod 2)≤
n

∑
i=1

Zi) (7)

≤ P((
n

∑
i=1

Zi ≥ T)∨ (∃false s̃ so that
n

∑
i=1

(Yi +Xi(s̃) mod 2)≤ T)) (8)

≤ P(
n

∑
i=1

Zi ≥ T)+P(∃false s̃ so that
n

∑
i=1

(Yi +Xi(s̃) mod 2)≤ T). (9)

6Because the inside probability can itself be turned into the expectation of an indicator random variable W that indicates an
error, and E(E(W)) = E(W).

EECS 70, Spring 2014, Note 24 8

All possible n-length binary sequences

Received sequence

sequences up to T bit-�ips away

Figure 2: A caricature of the decoder’s perspective. It sees the received sequence and basically looks for a
codeword nearby (less than T flips away). If the true codeword is not there, then we can declare error. If any
false codeword randomly wanders into the circle, then we can declare error. False codewords are uniformly
distributed across all sequences and so the ratio of the area of the circle to the area of the square represents
the probability of any given false codeword causing trouble by bad luck.

np T
Number of �ips that the noise does

Figure 3: A caricature of how the number of bitflips that the noise does are distributed and where the
threshold T is chosen to be.

EECS 70, Spring 2014, Note 24 9

Here we use capital letters Xi(s̃) to remind ourselves that these codewords are randomly generated. However,
notice that the received Yi depend only on the noise and the true codeword. They are hence independent of
all of the false codewords.

Consequently, for purposes of analysis, we can change the order of how randomness is realized in time.
Rather than thinking of the false codewords as being generated first, we can think of them as being randomly
drawn after the Yi have been realized. Since they are independent, before and after doesn’t matter. But in this
changed perspective, we think about the probability that a false codeword wanders too close to the received
string. See Figure 2.

Since each false codeword is identically distributed and there are (m−1) of them, we can easily apply the
union bound:

P(∃false s̃ so that
n

∑
i=1

(Yi +Xi(s̃) mod 2)≤ T)≤ (m−1)P(
n

∑
i=1

(Yi +Xi(f) mod 2)≤ T) (10)

where Xi(f) are simply Bernoulli- 1
2 random variables. Let ‖“close”‖ be the number of strings~x(f) that are

no more than T bit-flips away from ~Y = (Y1,Y2, . . . ,Yn). It is obvious from the nature of binary strings that
‖“close”‖ does not depend on~Y since no binary string is special when it comes to flipping bits.

Since the ~X(f) are uniformly distributed over all 2n possible strings, we know

P(
n

∑
i=1

(Yi +Xi(f) mod 2)≤ T) =
‖“close”‖

2n . (11)

All that remains is to upper bound ‖“close”‖. But this is something that we have seen before:

‖“close”‖=
T

∑
k=0

(
n
k

)
.

To finish, let us set T = n(p+ε) for some ε > 0 so that 0≤ p < p+ε < 1
2 . See Figure 3. Then we know by

the law of large numbers7 that the first term in (9) will go to zero as n→ ∞.

7In fact by using the Chernoff bound:

P(
n

∑
i=1

Zi ≥ T)≤ e−nD(p+ε||p)

where D(p+ ε||p)> 0. A second-order Taylor expansion of D about p will reveal the basic speed. It will show that if we want to
keep the probability of this kind of error small, we just need to choose ε = K√

n for some K that depends on both p and the desired
probability of error. See the note on the central limit theorem to understand this better.

EECS 70, Spring 2014, Note 24 10

The exact speed doesn’t matter. What matters is

‖“close”‖ =
T

∑
k=0

(
n
k

)
≤ (T +1) max

0≤k≤T

(
n
k

)
= (T +1)

(
n
T

)
= (n(p+ ε)+1)

(
n

n(p+ ε)

)
≈ (n(p+ ε)+1)2n(H(p+ε))

≈ 2n(H(p+ε))

where the first inequality is clear since replacing each term in a sum by the biggest term always gives
something bigger. The fact is that

(n
k

)
gets bigger with k as long as k < n

2 . The first approximation comes
from notes on fair coin tosses where we calculated using Stirling’s approximation that

(n
np

)
≈ 2nH(p) where

H(p) = p log2
1
p +(1− p) log2

1
1−p is the binary entropy function. The second approximation merely recog-

nizes that an exponential is much bigger than a polynomial.

Combining the above with (11) and (10) gives us:

P(∃false s̃ so that
n

∑
i=1

(Yi +Xi(s̃) mod 2)≤ T) ≤ (m−1)
‖“close”‖

2n

≈ m2nH(p+ε)2−n

= m2n(H(p+ε)−1)

This will go to zero as n→∞ as long as m grows more slowly than 2n(1−H(p+ε)). Consequently by continuity
of H(p) in p, for any rate R < 1−H(p), there exists an ε > 0 so that we can show that both of the error
terms in (9) go to zero as n→ ∞.

So the average probability of error goes to zero as we let n get large as long as the rate of the codebook
R < 1−H(p). For p = 0.05, this corresponds to rates less than 0.71 or so. (Far higher than than the 0.14
and the like that we were getting before.)

From averages to existence

So we know that on average over codes and messages, we do fine. But does that mean that any actual code
exists that protects all possible messages that we might want to send?

At this point, we simply apply Markov’s inequality twice. Once over codes and second over messages:

1. If codes on average have good performance, that must mean that there exist many codes (i.e. half of
all possible codes) whose average performance has a probability of error at most twice the average for
all possible codes. (Markov’s inequality). But this average is tending to zero as n gets large and so
then is twice the average.

EECS 70, Spring 2014, Note 24 11

2. For any of these particular codes, at least half the codewords must have an average probability of
error that is at most twice the average for this code. (Markov’s inequality again). But again, since the
average is tending to zero as n gets large, so is twice the average.

3. Now we know that there are lots of codes for which the best half of the codewords have a probability
of error that is tending to zero. So, just expunge the worst half of the codewords in any of these
codes! This gives a new codebook with half the number of messages. The elimination of possibly
confusing codewords can only reduce the probability of error for any surviving codeword. But now
every codeword in the new codebook has an average probability of error at most 4 times the average
over all possible codebooks and messages computed in the random coding argument above.

4. This “expurgation” costs at most 1 bit worth of messages since a factor of 2 in m is only 1 bit in terms
of the binary representation of messages. So plenty of good codes must exist at rates strictly less than
1−H(p) bits/raw-bit, as long as n is made large enough.

Notice the amazing thing here. We have shown that good codes exist — dramatically better than repetition
codes. In fact, we have shown that digital communication is possible and that reliability comes from “con-
voying” — having lots of data bits share space in a long codeword where they share redundancy across each
of them. The probability of error can be made to go to zero simply by increasing the size of the convoy and
making n large. It doesn’t need the rate R to go to zero. Instead, the rate R is simply limited by the average
number of flips. If there are lots of flips on average, p is closer to 1

2 and 1−H(p) is closer to zero.

This idea that the only fundamental cost of reliability was solidarity among individual bits prompted the
search for practical codes to see if this was actually possible in practice and not just in theory. This laid the
foundations for the modern digital age. But without knowing that good codes existed in principle, nobody
would even have begun searching for them. And proving their existence required probability.

If you want to learn more about such arguments, take EECS 121 and then EECS 229A. The ideas here
turn out to generalize and also talk about data compression. For more on the practical codes that result,
they are touched upon in EECS 121 and in much greater depth in EECS 229B. This general style of using
probability to prove existence is used in EECS 174 in graph contexts, and then in advanced graduate courses
on algorithms.

The kinds of random structures found for codes are also used a lot in AI algorithms, and increasingly for
signal processing applications as well.

EECS 70, Spring 2014, Note 24 12

