EECS 70 Discrete Mathematics and Probability Theory Fall 2014 Anant Sahai Discussion 8M-S

1. Decoding with General Errors

Suppose Alice wants to send Bob a message of n = 3 packets and she wants to guard against k = 1 corrupted packets. Further assume that packets can be coded up as integers between 0 and 6.

- a) Alice can work over GF(q). What is the minimum prime q can be?
- b) Suppose Alice wants to send Bob the message $m = (m_1, m_2, m_3)$. What is the maximum degree of the unique polynomial described by these points, which are of the form (i, m_i) ?
- c) What is the minimum number of extra points Alice must send to Bob so that he can correctly reconstruct her message m?
- d) Bob receives a message r = (3,3,3,2,0). In order to check whether there the message is corrupted, Bob needs to solve $Q(x) = r_i E(x)$, where Q(x) = P(x)E(x), P(x) is the original polynomial for sending the message, and E(x) is the error-locator polynomial in the Berlekamp-Welch algorithm.
 - What is the degree of Q(x)?
 - What is the degree of E(x)?
 - What does E(x) look like?

By letting x = i, 1 < i < 5 in $Q(x) = r_i E(x)$, we obtain the following system of linear equations:

$$a_3 + a_2 + a_1 + a_0 = 3 + 3b_0 \tag{1}$$

$$a_3 + 4a_2 + 2a_1 + a_0 = 6 + 3b_0 \tag{2}$$

$$6a_3 + 2a_2 + 3a_1 + a_0 = 2 + 3b_0 \tag{3}$$

$$a_3 + 2a_2 + 4a_1 + a_0 = 1 + 2b_0 \tag{4}$$

$$6a_3 + 4a_2 + 5a_1 + a_0 = 0 \tag{5}$$

What are the coefficients?

- e) What is the original polynomial $P(x) = ax^2 + bx + c$?
- f) Which packet is corrupted?
- g) What is the orignal value?