EECS 70 Discrete Mathematics and Probability Theory Fall 2014 Anant Sahai Discussion 3W

1. True or False

For each of the following claims, state whether the claim is true or false. If it is true, give a *short* proof; if it is false, give a *simple* counterexample.

- (a) In a stable marriage instance, if man *m* and woman *w* each put each other at the top of their respective preference lists, then *m* must be paired with *w* in every stable matching.
- (b) In a stable marriage instance with at least two men and two women, if man m and woman w each put each other at the bottom of their respective preference lists, then m cannot be paired with w in any stable pairing.

2. Propose-and-Reject Proofs

Prove the following statements about the traditional propose-and-reject algorithm.

- (a) In any execution of the algorithm, if a woman receives a proposal on day *i*, then she receives some proposal on every day thereafter until termination.
- (b) In any execution of the algorithm that takes k days, there must be some woman who does not receive a proposal in day k 1.
- (c) In any execution of the algorithm, if a woman receives no proposal on day *i*, then she receives no proposal on any previous day j, $1 \le j < i$.

(d) In any execution of the algorithm, there is at least one woman who only receives a single proposal (Hint: use the parts above!)

3. Good, Better, Best

In a particular instance of the stable marriage problem with *n* men and *n* women, it turns out that there are exactly three distinct stable matchings, M_1 , M_2 , and M_3 . Also, each man *m* has a different partner in the three matchings. Therefore each man has a clear preference ordering of the three matchings (according to the ranking of his partners in his preference list). Now, suppose for man m_1 , this order is $M_1 > M_2 > M_3$.

Prove that every man has the same preference ordering $M_1 > M_2 > M_3$.

4. Pairing Up

Prove that for every even $n \ge 2$, there exists an instance of the stable marriage problem with *n* men and *n* women such that the instance has at least $2^{n/2}$ distinct stable matchings.