EECS 70	Discrete Mathematics and Probab	oility Theory
Fall 2014	Anant Sahai	Discussion 4W-S

1. Euclid's Algorithm Euclid's algorithm is a fast algorithm for computing the greatest common divisor of two integers. Here is an example. To compute gcd(16, 10):

16	=	$10 \times 1 + 6$		(1)
10	=	$6 \times 1 + 4$	(notice this is a recursive call of $gcd(10,6)$)	(2)
6	=	$4 \times 1 + 2$	(notice this is a recursive call of $gcd(6,4)$)	(3)
4	=	$2 \times 2 + 0$	(notice this is a recursive call of $gcd(4,2)$)	(4)

So gcd(16, 10) = 2, the last non-zero remainder. We can also back substitute to find x, y such that

$$2 = 16x + 10y = gcd(16, 10).$$

Here is how:

Rearrange (3) to get an expression	
for gcd(16,10):	$2 = 6 - 4 \times 1$
rearrange (2) to get $4 = (10 - 6 \times 1)$	
and substitute:	$2 = 6 - (10 - 6 \times 1) \times 1$
simplify:	$2 = -10 + 6 \times 2$
now rearrange (1) to get	
$6 = (16 - 10 \times 1)$ and substitute:	$2 = -10 + (16 - 10 \times 1) \times 2$
simplify:	$2 = 16 \times 2 - 10 \times 3$

So x = 2 and y = -3.

Run Euclid's algorithm for to determine the greatest common divisor for the following:

1. a = 8, b = 22

2. a = 13, b = 21

3.
$$a = 140, b = 38$$