EECS 70 Discrete Mathematics and Probability Theory Fall 2014 Anant Sahai Discussion 6W

1. INTERPOL WARNING

Consider the set of four points $\{(-1,1), (0,2), (1,5), (2,40)\}$. Find the unique polynomial over \mathbb{R} of degree ≤ 3 that passes through these points by solving a system of linear equations.

2. Roots

Let's make sure you're comfortable with thinking about roots of polynomials in familiar old \mathbb{R} . For all of these questions, take the context to be \mathbb{R} :

- (a) True or False: if $p(x) = ax^2 + bx + c$ has two positive roots, then ab < 0 and ac > 0. Argue why or provide a counterexample.
- (b) Suppose P(x) and Q(x) are two different nonzero polynomials with degrees d_1 and d_2 respectively. What can you say about the number of solutions of P(x) = Q(x)? How about $P(x) \cdot Q(x) = 0$?
- (c) We've given a lot of attention to the fact that a nonzero polynomial of degree *d* can have at most *d* roots. Well, I'm sick of it. What I want to know is, what is the *minimal* number of real roots that a nonzero polynomial of degree *d* can have? How does the answer depend on *d*?

(d) Consider the degree 2 polynomial $f(x) = x^2 + ax + b$. Show that, if f has exactly one root, then $a^2 = 4b$.

3. Roots: The Next Generations

Now go back and do it all over in modular arithmetic...

Which of the facts from above stay true when \mathbb{R} is replaced by $\mathbf{GF}(p)$ [i.e., integer arithmetic modulo the prime *p*]? Which change, and how? Which statements won't even make sense anymore?